中国物理学会期刊网
物理学报  2017, Vol.66 Issue (19): 194202  DOI:10.7498/aps.66.194202
高功率光纤中传输光模式与其波长相关性研究
1. 四川大学电子信息学院, 激光微纳工程研究所, 成都 610064;2. 华北光电技术研究所, 北京 100015>
Analysis of wavelength dependence of mode in high power fiber laser
1. Institute of Laser and Micro/Nano Engineering, College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China;2. North China Research Institute of Electro-Optics, Beijing 100015, China}>

摘要

针对高功率光纤激光模式诊断和光谱诊断的需求,研究了光纤中传输模式的波长相关性,数值计算了光纤中各个模式的模场分布随波长的变化曲线及相应的光束质量,采用双傅里叶变换F2法实际测量了光纤模式成分与波长的关系曲线.结果表明,光纤中各个模式的模场分布随波长变化,波长越长,模场面积越大;模式的光束质量随波长变化不大,但在截止频率附近明显变差;光纤中各个模式的功率占比与波长有关.

Abstract

High power fiber lasers and amplifiers are widely used in the scientific and industrial field. In order to meet the requirements for high output powers the effective area of fibers becomes larger and larger to reduce optical nonlinearities. With the increase of effective area, the number of high-order modes will increase. In the case of high output power, the spectral shift and broadening of the optical fiber will also affect the modal number and content. The number and content of fiber modes affect the pointing stablity and quality of the laser beam. The M2-parameter is commonly used to define the quality of the laser beam, but a small M2 number is not guaranteed for single mode operation. Therefore, the relationship between wavelength and transmission mode in fiber transmission is studied in this paper. We use the spatial and spectral Fourier transform (F2) method to establish a theoretical-experimental method of describing the relationship between wavelength and mode. This method can directly give out the modal content of optical fibers without any priori parameter such as the properties of fiber and requirement for setup accuracy. On the one hand, the theoretical modeling of wavelength affects modal content. In the simulation, the sources with the same wavelength bandwidth and different central wavelengths are used to test the fiber. The results show that the modal content and number of the fiber change with the wavelength bandwidth and center wavelength. The mode components of the corresponding optical fiber will change after changing the central wavelength. As the spectral width of the light source increases, the number of high-order modes increases. On the other hand, in order to further verify the relationship between wavelength and mode of fiber, the F2 method is used to measure the optical fiber modal content with different wavelengths. The final experimental results are in agreement with the theoretical results. The experimental and simulation results show that the mode field distribution of each mode varies with wavelength:the longer the wavelength, the larger the mode field is. The beam quality has little change with the wavelength except for those positions with frequency near the cutoff frequency, and the power ratio of each mode relates to the wavelength.
收稿日期:2017-02-21

基金资助

国家自然科学基金(批准号:11574221)和国家高技术研究发展计划(批准号:JG2011105)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant No. 11574221) and the National High Technology Research and Development Program of China (Grant No. JG2011105).

引用本文

[中文]
梁井川, 冯国英, 张澍霖, 兰斌, 周寿桓. 高功率光纤中传输光模式与其波长相关性研究[J]. 物理学报, 2017, 66(19): 194202.
[英文]
Liang Jing-Chuan, Feng Guo-Ying, Zhang Shu-Lin, Lan Bin, Zhou Shou-Huan. Analysis of wavelength dependence of mode in high power fiber laser[J]. Acta Phys. Sin., 2017, 66(19): 194202.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Zhou P, Liu Z J, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350
[2]
Koplow J P, Kliner D A V, Goldberg L 2000 Opt. Lett. 25 442
[3]
Nicholson J W, Fini J M, Yablon A D, Westbrook P S, Feder K, Headley C 2007 Opt. Lett. 32 2562
[4]
Zheng X J, Ren G B, Huang L, Zheng H L 2016 Acta Phys. Sin. 65 064208 (in Chinese)[郑兴娟, 任国斌, 黄琳, 郑鹤玲 2016 物理学报 65 064208]
[5]
Limpert J, Schreiber T, Nolte S, Zellmer H, Tünnermann A, Iliew R, Lederer F, Broeng J, Vienne G, Petersson A, Jakobsen C 2003 Opt. Express 11 818
[6]
Olshansky R, Keck D B 1976 Appl. Opt. 15 483
[7]
Feng Y, Taylor L R, Calia D B 2009 Opt. Express 17 23678
[8]
Jauregui C, Eidam T, Otto H J, Stutzki F, Jansen F, Limpert J, Tünnermann A 2012 Opt. Express 20 12912
[9]
Stutzki F, Otto H J, Jansen F, Gaida C, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Lett. 36 4572
[10]
Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350
[11]
Fu Y Q, Feng G Y, Zhang D Y, Chen J G, Zhou S H 2010 Optik 121 452
[12]
Wielandy S 2007 Opt. Express 15 15402
[13]
Schimpf D N, Barankov R A, Ramachandran S 2011 Opt. Express 19 13008
[14]
Nandi P, Chen Z L, Witkowska A, Wadsworth W J, Birks T A, Knight J C 2009 Opt. Lett. 34 1123
[15]
Kaiser T, Flamm D, Schröter S, Duparré M 2009 Opt. Express 17 9347
[16]
Paurisse M, Lévèque L, Hanna M, Druon F, Georges P 2012 Opt. Express 20 4074
[17]
Hu L L, Feng G Y, Dong Z L 2015 Infrar. Laser Eng. 44 2517 (in Chinese)[胡丽荔, 冯国英, 董哲良 2015 红外与激光工程 44 2517]
[18]
Nicholson J W, Yablon A D, Ramachandran S, Ghalmi S 2008 Opt. Express 16 7233
[19]
Nicholson J W, Yablon A D, Fini J M, Mermelstein M D 2009 IEEE J. Quantum Electron. 15 61
[20]
Nguyen D M, Blin S, Nguyen T N, Le S D, Provino L, Thual M, Chartier T 2012 Appl. Opt. 51 450
[21]
Zhang S L, Feng G Y, Zhou S H 2016 Acta Phys. Sin. 65 154202 (in Chinese)[张澍霖, 冯国英, 周寿桓 2016 物理学报 65 154202]
[22]
Gloge D 1971 Appl. Opt. 10 2252
[23]
Tan X F, Liu X L, Zhao W, Li C, Wang Y S, Li J F 2013 Opt. Commun. 294 148
数据正在加载中...
中国物理学会期刊网