中国物理学会期刊网
物理学报  2017, Vol.66 Issue (21): 216103  DOI:10.7498/aps.66.216103
锯齿形石墨烯反点网络加工与输运性质研究
1. 中国科学院物理研究所, 北京凝聚态物理国家实验室, 北京 100190;2. 北京纳米材料与纳米器件重点实验室, 北京 100190;3. 量子物质科学协同创新中心, 北京 100190;4. 中国科学院大学物理学院, 北京 100190>
Fabrication of zigzag-edged graphene antidot lattice and its transport properties
1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;2. Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China;3. Collaborative Innovation Center of Quantum Matter, Beijing 100190, China;4. School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China>

摘要

具有特定边界的石墨烯纳米结构在纳电子学、自旋电子学等研究领域表现出良好的应用前景.然而石墨烯加工成纳米结构时,无序的边界不可避免地会降低其载流子迁移率.氢等离子体各向异性刻蚀技术是加工具备完美边界石墨烯微纳结构的一项关键技术,刻蚀后的石墨烯呈现出规则的近原子级平整的锯齿形边界.本文研究了氮化硼上锯齿形边界石墨烯反点网络的磁输运性质,低磁场下可以观测到载流子围绕着一个空位缺陷运动时的公度振荡磁阻峰.随着磁场的增大,朗道能级简并度逐渐增大,载流子的磁输运行为从Shubnikov-de Haas振荡逐渐向量子霍尔效应转变.在零磁场附近可以观测到反点网络周期性空位缺陷的边界散射所导致的弱局域效应.研究结果表明,在氮化硼衬底上利用氢等离子体刻蚀技术加工锯齿形边界石墨烯反点网络,其样品质量会明显提高,这种简单易行的方法为后续高质量石墨烯反点网络的输运研究提供了新思路.

Abstract

Graphene nanostructures with defined edges are proposed as a promising platform for the realization of nano-electronics and spin-electronics. However, patterned graphene nanostructure can lead to extra damage and drastically reduce its charge carrier mobility due to the edge disorder. The high flexibility of a top-down patterning method with edge smoothness is extremely desirable. Hydrogen plasma enhanced anisotropic etching graphene is demonstrated to be an efficient method of fabricating zigzag-edge graphene nanostructures. In addition, boron nitride is shown to be an excellent substrate for graphene due to its atomic flatness. Here in this work, we fabricate zigzag edge graphene antidot lattices on a boron nitride substrate via dry transfer method and traditional electron beam lithography, and reactive ion etching followed by hydrogen anisotropic etching approach. At low magnetic fields, weak localization is observed and its visibility is enhanced by intervalley scattering on antidot edges. We observe commensurate features in magnetotransport properties which stem from carriers around one antidot, signifying the high quality of our patterned samples. At high magnetic field, crossover from Shubnikov-de Haas oscillation to quantum Hall effect can be clearly observed due to the high mobility of our zigzag edge graphene antidot lattices. The transport properties of our patterned samples suggest that our fabrication method paves the way for achieving high quality graphene antidot lattices. High quality zigzag edge graphene antidot lattice might be a great platform to study the transport properties of lateral superlattice potential modulation graphene.
收稿日期:2017-06-29

基金资助

国家自然科学基金(批准号:61325021,11574361,61390503)和国家重点基础研究发展计划(批准号:2013CB934500,2013CBA01602)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 61325021, 11574361, 61390503) and the National Basic Research Program of China (Grant Nos. 2013CB934500, 2013CBA01602).

引用本文

[中文]
张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究[J]. 物理学报, 2017, 66(21): 216103.
[英文]
Zhang Ting-Ting, Cheng Meng, Yang Rong, Zhang Guang-Yu. Fabrication of zigzag-edged graphene antidot lattice and its transport properties[J]. Acta Phys. Sin., 2017, 66(21): 216103.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338
[2]
Liu D P, Yu Z M, Liu Y L 2016 Phys. Rev. B 94 155102
[3]
Son Y W, Cohen M L, Louie S G 2006 Nature 444 347
[4]
Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408
[5]
Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat. Nanotechnol. 6 162
[6]
Long M, Liu E, Wang P, Gao A, Xia H, Luo W, Wang B, Zeng J, Fu Y, Xu K, Zhou W, Lü Y, Yao S, Lu M, Chen Y, Ni Z, You Y, Zhang X, Qin S, Shi Y, Hu W, Xing D, Miao F 2016 Nano Lett. 16 2254
[7]
Zhang T T, Wu S, Yang R, Zhang G Y 2017 Frontiers Phys. 12 127206
[8]
Yu Z M, Pan H, Yao Y 2015 Phys. Rev. B 92 155419
[9]
Nikitin A Y, Guinea F, Martin-Moreno L 2012 Appl. Phys. Lett. 101 151119
[10]
Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506
[11]
Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K 2008 Phys. Rev. Lett. 100 136804
[12]
Shen T, Wu Y Q, Capano M A, Rokhinson L P, Engel L W, Ye P D 2008 Appl. Phys. Lett. 93 122102
[13]
Shimizu T, Nakamura J, Tada K, Yagi Y, Haruyama J 2012 Appl. Phys. Lett. 100 023104
[14]
Yagi R, Shimomura M, Tahara F, Kobara H, Fukada S 2012 J. Phys. Soc. Jpn. 81 063707
[15]
Eroms J, Weiss D 2009 New J. Phys. 11 095021
[16]
Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotechnol. 5 190
[17]
Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792
[18]
Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods R C, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594
[19]
Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598
[20]
Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305 (in Chinese) [卢晓波, 张广宇 2015 物理学报 64 077305]
[21]
Lu X, Yang W, Wang S, Wu S, Chen P, Zhang J, Zhao J, Meng J, Xie G, Wang D, Wang G, Zhang T T, Watanabe K, Taniguchi T, Yang R, Shi D, Zhang G 2016 Appl. Phys. Lett. 108 113103
[22]
Nihey F, Nakamura K, Takamasu T, Kido G, Sakon T, Motokawa M 1999 Phys. Rev. B 59 14872
[23]
Smet J H, von Klitzing K, Weiss D, Wegscheider W 1998 Phys. Rev. Lett. 80 4538
[24]
Eroms J, Tolkiehn M, Weiss D, Rossler U, de Boeck J, Borghs S 2002 Physica E 12 918
[25]
Albrecht C, Smet J H, von Klitzing K, Weiss D, Umansky V V, Schweizer H 2001 Phys. Rev. Lett. 86 147
[26]
Shabani J, Shayegan M, Winkler R 2008 Phys. Rev. Lett. 100 096803
[27]
Sandner A, Preis T, Schell C, Giudici P, Watanabe K, Taniguchi T, Weiss D, Eroms J 2015 Nano Lett. 15 8402
[28]
Yagi R, Sakakibara R, Ebisuoka R, Onishi J, Watanabe K, Taniguchi T, Iye Y 2015 Phys. Rev. B 92 195406
[29]
Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2013 Nat. Phys. 9 225
[30]
Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L 2011 Nat. Phys. 7 693
[31]
Bischoff D, Krähenmann T, Dröscher S, Gruner M A, Barraud C, Ihn T, Ensslin K 2012 Appl. Phys. Lett. 101 203103
[32]
Yang R, Zhang L, Wang Y, Shi Z, Shi D, Gao H, Wang E, Zhang G 2010 Adv. Mater. 22 4014
[33]
Shi Z, Yang R, Zhang L, Wang Y, Liu D, Shi D, Wang E, Zhang G 2011 Adv. Mater. 23 3061
[34]
Wang G, Wu S, Zhang T, Chen P, Lu X, Wang S, Wang D, Watanabe K, Taniguchi T, Shi D, Yang R, Zhang G 2016 Appl. Phys. Lett. 109 053101
[35]
Wang G L, Xie L, Chen P, Yang R, Shi D X, Zhang G Y 2016 Acta Phys. Sin. 65 196101 (in Chinese) [王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇 2016 物理学报 65 196101]
[36]
Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104
数据正在加载中...
中国物理学会期刊网