中国物理学会期刊网
物理学报  2017, Vol.66 Issue (24): 244205  DOI:10.7498/aps.66.244205
连续变量1.34 μm量子纠缠态光场的实验制备
1. 山西大学光电研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;2. 极端光学协同创新中心, 山西大学, 太原 030006>
Continuous variable quantum entanglement at 1.34 μm
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China>

摘要

设计研制了连续单频671 nm/1342 nm双波长激光器,并通过模式清洁器降低了激光器额外噪声.利用该低噪声连续单频激光器抽运由Ⅱ类准相位匹配晶体构成的双共振非简并光学参量放大器,实验制备出纠缠度达3 dB的光通信波段1.34 μm连续变量量子纠缠态光场.该波段量子纠缠态光场在光纤中传输损耗低且相散效应小,与现有的光纤通信系统相兼容,可用于实现基于光纤的实用化连续变量量子通信.

Abstract

Continuous variable (CV) quantum entanglement is a fundamental resource of CV quantum communication and quantum computation. It is useful in a wide variety of applications, including quantum teleportation, quantum dense coding, quantum key distribution, and high-precision quantum measurement. In this paper, we generate CV quantum entanglement at a telecommunication wavelength of 1342 nm by using a nondegenerate optical parametric amplifier (NOPA) with a type-Ⅱ periodically poled KTiOPO4 (PPKTP) crystal. A home-made continuous-wave single-frequency dual-wavelength (671 nm and 1342 nm) Nd:YVO4/LiB3O5 laser is achieved with output powers of 1.5 W (671 nm) and 1.3 W (1342 nm). Then a mode cleaner (MC1) with a fineness of 400 and linewidth of 0.75 MHz and a mode cleaner MC2 with a fineness of 400 and linewidth of 0.75 MHz are used to filter the noises of laser at 1342 nm and 671 nm, respectively. By using MCs, the intensity noise of laser reaches a shot noise level (SNL) for analysis frequencies higher than 1.0 MHz, and the phase noise of laser reaches an SNL for analysis frequencies higher than 1.3 MHz. Utilizing this kind of low noise single-frequency 671 nm laser as a pump, a doubly-resonant optical parametric oscillator with a threshold of 325 mW is realised. When the low noise single-frequency 1342 nm laser is injected as a signal and the relative phase between the pump and injected signal is locked to π, the NOPA is operated at deamplification. After optimizing the temperature of the type-Ⅱ PPKTP crystal and at a pump power of 260 mW, Einstein-Podolsky-Rosen (EPR)-entangled beams with quantum correlation of 3.0 dB for both the amplitude and phase quadratures are experimentally generated. The strength of EPR-entangled beams is relatively low. It is maybe due to the low nonlinear conversion efficiency and large absorption of the type-Ⅱ PPKTP crystal at 671 nm and 1342 nm. The generated CV quantum entanglement at 1.34 μm has lower transmission loss and smaller phase diffusion effect in a silica fiber. The research contributes to a high quality quantum source for the CV quantum communication based on existing telecommunication fiber networks.
收稿日期:2017-07-18

基金资助

国家重点研发计划(批准号:2016YFA0301401)资助的课题.
Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301401).

引用本文

[中文]
马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 μm量子纠缠态光场的实验制备[J]. 物理学报, 2017, 66(24): 244205.
[英文]
Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou. Continuous variable quantum entanglement at 1.34 μm[J]. Acta Phys. Sin., 2017, 66(24): 244205.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513
[2]
Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621
[3]
Zhai Z H, Li Y M, Wang S K, Guo J, Zhang T C, Gao J R 2005 Acta Phys. Sin. 54 2710 (in Chinese) [翟泽辉, 李永明, 王少凯, 郭娟, 张天才, 郜江瑞 2005 物理学报 54 2710]
[4]
Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330
[5]
Madsen L S, Usenko V C, Lassen M, Filip R, Andersen U L 2012 Nat. Commun. 3 1083
[6]
Song H C, Gong L H, Zhou N R 2012 Acta Phys. Sin. 61 154206 (in Chinese) [宋汉冲, 龚黎华, 周南润 2012 物理学报 61 154206]
[7]
Bachor H A, Ralph T C 2004 A Guide to Experiments in Quantum Optics (2nd Ed.) (Berlin: Wiley-VCH) pp247-250
[8]
Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082
[9]
Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese) [刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]
[10]
Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663
[11]
Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[12]
Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952
[13]
Eberle T, Handchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329
[14]
Huo M R, Qin J L, Yan Z H, Jia X J, Peng K C 2016 Appl. Phys. Lett. 109 221101
[15]
Black E D 2001 Am. J. Phys. 69 79
[16]
Shi Z, Su X L 2010 Acta Sin. Quan. Opt. 16 158 (in Chinese) [石柱, 苏晓龙 2010 量子光学学报 16 158]
[17]
Villar A S 2008 Am. J. Phys. 76 922
[18]
Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763
[19]
Reid M D, Drummond P D 1988 Phys. Rev. Lett. 60 2731
[20]
Giovannetti V, Mancini S, Vitali D, Tombesi P 2003 Phys. Rev. A 67 022320
数据正在加载中...
中国物理学会期刊网