中国物理学会期刊网
物理学报  2017, Vol.66 Issue (24): 244301  DOI:10.7498/aps.66.244301
基于蜷曲空间结构的近零折射率声聚焦透镜
1. 江苏大学理学院, 流体机械工程技术研究中心, 镇江 212013;2. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190>
Acoustic focusing lens with near-zero refractive index based on coiling-up space structure
1. Research Center of Fluid Machinery Engineering and Technology, Faculty of Science, Jiangsu University, Zhenjiang 212013, China;2. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China>

摘要

研究基于蜷曲空间结构的近零折射率声聚焦透镜.根据近零折射率材料的声波方向选择机理,采用蜷曲空间结构为基本单元进行排列,设计具有特定入射与出射界面的几何结构,对透射声波的出射方向进行调控,实现了平面声波与柱面声波的聚焦效应,并深入讨论了透镜内部刚性散射体对声聚焦性能的影响.在此基础上,改变近零折射率透镜的出射界面,可以精确调控声波阵面的形状与方向.该类型透镜具有单一的单元结构、高聚焦性能及高鲁棒性等优点.研究结果为设计新型近零折射率声聚焦透镜提供了理论指导与实验参考,同时也为研究声波阵面的调控提供了新思路.

Abstract

An acoustic focusing lens based on a coiling-up space structure with near-zero refractive index is studied. According to the direction selection mechanism for acoustic waves in a near-zero refractive index material, we adopt the coiling-up space structure as a basic unit for arrangement, and design a geometric structure with specific incident and outgoing interfaces which is used to manipulate the outgoing direction of transmitted wave. Thus, the focusing effects for plane acoustic wave and cylindrical acoustic wave are realized. Besides, the influences of rigid scatterers inside the lens on the focusing performance are also discussed in detail. Moreover, the shape and direction of the acoustic waveform can be manipulated accurately by changing the outgoing interface of the lens with the near-zero refractive index. The results show that the lens with a single and two circular surfaces could realize the focusing effects of the plane and cylindrical acoustic waves, respectively, and the rigid scatterers inside the lens have no effects on the focusing performance. In addition, the cylindrical acoustic wave could be transformed into the plane acoustic wave through the lens with the circular incident surface and the plane exit surface, and the inclined angle of the exit surface could be used to manipulate the propagation direction of the plane wave. The simulation results between the lenses composed of the coiling-up space structure and the effective medium are in good agreement with each other. This type of lens has the advantages of single cell structure, high focusing performance, and high robustness. This work provides theoretical guidance and experimental reference for designing a novel acoustic focusing lens with the near-zero refractive index, and offers a new idea for studying the manipulation of the acoustic waveforms.
收稿日期:2017-08-13

基金资助

国家自然科学基金(批准号:11774137,11404147)、国家自然科学基金重大项目(批准号:51239005)、江苏省自然科学基金(批准号:BK20140519)、江苏高校"青蓝工程"、江苏省"六大人才高峰"(批准号:GDZB-019)和江苏大学工业中心创新实践项目资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11774137, 11404147), the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140519), the Jiangsu Qing Lan Project, China, the Six Talent Peaks Project in Jiangsu Province, China (Grant No. GDZB-019), and the Practice Innovation Training Program for Industrial Center of Jiangsu University, China.

引用本文

[中文]
孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜[J]. 物理学报, 2017, 66(24): 244301.
[英文]
Sun Hong-Xiang, Fang Xin, Ge Yong, Ren Xu-Dong, Yuan Shou-Qi. Acoustic focusing lens with near-zero refractive index based on coiling-up space structure[J]. Acta Phys. Sin., 2017, 66(24): 244301.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Zhao J J, Ye H P, Huang K, Chen Z N, Li B W, Qiu C W 2014 Sci. Rep. 4 6257
[2]
Gu Y, Cheng Y, Liu X J 2015 Appl. Phys. Lett. 107 133503
[3]
Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]
[4]
Tang K, Qiu C Y, Lu J Y, Ke M Z, Liu Z Y 2015 J. Appl. Phys. 117 024503
[5]
Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505
[6]
Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302
[7]
Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323
[8]
Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502
[9]
Zhang S, Yin L L, Fang N 2009 Phys. Rev. Lett. 102 194301
[10]
Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305
[11]
Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508
[12]
Wang W Q, Xie Y B, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904
[13]
Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102
[14]
Qian F, Zhao P, Quan L Liu X Z, Gong X F 2014 Europhys. Lett. 107 34009
[15]
Ge Y, Sun H X, Liu C, Qian J, Yuan S Q, Xia J P, Guan Y J, Zhang S Y 2016 Appl. Phys. Express 9 066701
[16]
Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 044303 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 044303]
[17]
Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505
[18]
Xia J P, Sun H X, Cheng Q, Xu Z, Chen H, Yuan S Q, Zhang S Y, Ge Y, Guan Y J 2016 Appl. Phys. Express 9 057301
[19]
Guan Y J, Sun H X, Liu S S, Yuan S Q, Xia J P, Ge Y 2016 Chin. Phys. B 25 104302
[20]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[21]
Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546
[22]
Mei J, Wu Y 2014 New J. Phys. 16 123007
[23]
Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517
[24]
Xie Y, Wang W, Chen H, Konneker A, Popa B I, Cummer S A 2014 Nat. Commun. 5 5553
[25]
Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966
[26]
Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301
[27]
Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, Cheng J C 2016 Appl. Phys. Lett. 108 073501
[28]
Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304
[29]
Liu C, Xia J P, Sun H X, Yuan S Q 2017 J. Phys. D: Appl. Phys. 50 505101
[30]
Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906
[31]
Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501
[32]
Liu C, Sun H X, Yuan S Q, Xia J P, Qian J 2017 Acta Phys. Sin. 66 154302 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣 2017 物理学报 66 154302]
[33]
Jahdali R A, Wu Y 2016 Appl. Phys. Lett. 108 031902
[34]
Wang X P, Wan L L, Chen T N, Song A L, Wang F 2016 J. Appl. Phys. 120 014902
[35]
Xia J P, Sun H X, Yuan S Q 2017 Sci. Rep. 7 815
[36]
Liang Z X, Li J 2012 Phys. Rev. Lett. 108 114301
[37]
Xie Y B, Popa B I, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501
[38]
Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107
[39]
Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013
[40]
Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507
[41]
Wang Z Y, Wei W, Hu N, Min R, Pei L, Chen Y W, Liu F M, Liu Z Y 2014 J. Appl. Phys. 116 204501
[42]
Gu Y, Cheng Y, Wang J S, Liu X J 2015 J. Appl. Phys. 118 024505
[43]
Liu F M, Liu Z Y 2015 Phys. Rev. Lett. 115 175502
[44]
Wu S Q, Mei J 2016 AIP Adv. 6 015204
[45]
Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505
[46]
Shen C, Xie Y B, Li J F, Cummer S A, Jing Y 2016 Appl. Phys. Lett. 108 223502
[47]
Zheng L Y, Wu Y, Ni X, Chen Z G, Lu M H, Chen Y F 2014 Appl. Phys. Lett. 104 161904
[48]
Xie Y B, Konneker A, Popa B I, Cummer S A 2013 Appl. Phys. Lett. 103 201906
[49]
Sun H X, Zhang S Y, Yuan S Q 2016 Chin. Phys. B 25 124313
[50]
Jia D, Sun H X, Yuan S Q, Ge Y 2017 Chin. Phys. B 26 024302
[51]
Sun X D, Chen L, Jiang H B, Yang Z B, Chen J C, Zhang W Y 2016 IEEE T. Ind. Electron. 63 3479
[52]
Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302
数据正在加载中...
中国物理学会期刊网