中国物理学会期刊网
物理学报  2018, Vol.67 Issue (15): 157506  DOI:10.7498/aps.67.20180911
基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展
1. 中国科学院上海硅酸盐研究所, 高性能陶瓷和超微结构国家重点实验室, 上海 200050;2. 中国科学技术大学, 合肥微尺度物质科学国家研究中心和物理系, 合肥 230026>
Progresses of magnetoelectric composite films based on PbMg1/3Nb2/3O3-PbTiO3 single-crystal substrates
1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;2. Hefei National Center for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, China>

摘要

电子信息技术的迅速发展对磁电功能器件的微型化、智能化、多功能化以及灵敏度、可靠性、低功耗等都提出了更高的需求,传统的块体磁电功能材料已日渐不能满足上述需求,而层状磁电复合薄膜材料同时具有铁电性、铁磁性和磁电耦合等多种特性,因此能满足上述需求且有望应用于新一代磁电功能器件.层状磁电复合材料不仅具有非常丰富的物理现象和效应,而且在弱磁探测器、多态存储器、电写磁读存储器、电场可调低功耗滤波器、移相器、天线等微波器件中也具有广阔的应用前景,因而受到材料科学家和物理学家广泛的关注和研究.在层状磁电复合材料中,功能薄膜/铁电单晶异质结因其制备简单、结构设计和材料选择灵活以及电场调控方便和有效,最近十余年引起了越来越多的研究人员的兴趣.目前,以具有优异铁电和压电性能的(1-x)PbMg1/3Nb2/3O3-xPbTiO3(PMN-PT)单晶作为衬底,构建功能薄膜/PMN-PT异质结已成为国内外多铁性复合薄膜材料研究领域的重要方向之一.相比于其他国家,我国科学家无论在发表的文章数量还是在文章被引用次数方面都处于领先地位,表明我国在功能薄膜/PMN-PT单晶异质结方面的研究卓有成效.迄今为止,研究人员已构建了锰氧化合物/PMN-PT、铁氧体/PMN-PT、铁磁金属/PMN-PT、稀磁半导体/PMN-PT、发光材料/PMN-PT、二维材料/PMN-PT、多层薄膜/PMN-PT、超导薄膜/PMN-PT等多种类型的异质结,在理论研究和实验方面都取得了丰富的研究成果.本文对基于PMN-PT压电单晶的磁电复合薄膜材料的研究进展进行了总结:简要介绍了与功能薄膜/PMN-PT异质结相关的研究论文发表现状;介绍了PMN-PT单晶在准同型相界附近的相图和应变特性;按照功能薄膜材料所属的体系对异质结进行了分类,并选取部分代表性的研究成果,介绍了材料的磁电性能和内涵的物理机制;最后就目前有待解决的问题和未来可能的应用方向进行了总结和展望.

Abstract

Owing to the rapid development of microelectronic technology,higher requirements are raised for miniaturization, intellectualization,sensitivity,reliability,low-power consumption and versatile functions of electromagnetic functional devices,but conventional block magnetic or electrical functional materials cannot meet those requirements mentioned above any longer.Layered magnetoelectric composites,by contrast,have ferroelectric,ferromagnetic and magnetoelectric properties,so they are possible to satisfy these demands above and be applied to the next-generation magnetoelectric functional devices.Layered magnetoelectric composites not only have rich physical phenomena and effects,but also possess broad application prospects in weak magnetic field detectors,multi-state memories,electric-write/magnetic-read memories,electrically tunable filters,phase shifters,antennas,etc,which have attracted extensive attention of material scientists and physicists.Among layered magnetoelectric composites,the "functional thin film/ferroelectric single crystal" heterostructures have aroused increasingly interest due to their simple preparation method,flexible structural design,effective electric field control and low power consumption.Currently,because of the excellent ferroelectric and piezoelectric properties of the (1 -x) PbMg1/3Nb2/3O3-xPbTiO3(PMN-PT) single crystal,the functional thin film/PMN-PT single crystal heterostructure has become one of the hot research topics in the multiferroic composite thin film material field.On this research topic,Chinese scientists have made their own significant contributions to the research of functional thin film/PMN-PT single crystal heterojunction.So far,researchers have built multiple types of thin film/PMN-PT heterostructures,such as manganese oxide/PMN-PT,ferrite/PMN-PT,ferromagnetic metal/PMN-PT,dilute magnetic semiconductor/PMN-PT,luminescent material/PMN-PT,two-dimensional material/PMN-PT,multi-layer film/PMN-PT,superconductive material/PMN-PT,etc.,and they have made great achievements in both theoretical and experimental studies.In this review,we summarize the research progress of magnetoelectric composite thin films based on PMN-PT single crystal substrates in the last decade.We first briefly describe the current status of articles related to functional film/PMN-PT heterostructures.Then we introduce the phase diagram and electric-field-induced strain properties of the PMN-PT single crystal around the morphotropic phase boundary.We also classify the heterostructures according to different categories of functional thin film materials and discuss the representative research findings of each category in the past few years.Our discussion focuses on the magnetoelectric properties of materials and the intrinsic physical mechanism.Finally,we also discuss the scientific problems to be solved and predict the possible application directions in the future.
收稿日期:2018-05-07

基金资助

国家自然科学基金(批准号:51572278,51790491)和国家重点研发计划(批准号:2016YFA0300103)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 51572278, 5179049) and the National Key R&D Program of China (Grant No. 2016YFA0300103).

引用本文

[中文]
徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光. 基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展[J]. 物理学报, 2018, 67(15): 157506.
[英文]
Xu Meng, Yan Jian-Min, Xu Zhi-Xue, Guo Lei, Zheng Ren-Kui, Li Xiao-Guang. Progresses of magnetoelectric composite films based on PbMg1/3Nb2/3O3-PbTiO3 single-crystal substrates[J]. Acta Phys. Sin., 2018, 67(15): 157506.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Spaldin N A, Fiebig M 2005 Science 309 391
[2]
Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21
[3]
Ma J, Hu J M, Nan C W 2011 Adv. Mater. 23 1062
[4]
Ju C, Yang J C, Luo C, Shafer P, Liu H J, Huang Y L, Kuo H H, Xue F, Luo C W, He Q, Yu P, Arenholz E, Chen L Q, Zhu J, Lu X, Chu Y H 2016 Adv. Mater. 28 876
[5]
Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759
[6]
Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101
[7]
Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402
[8]
Gao Y, Zhou T, Huang H X, Wang Q H 2015 Sic. Rep. 5 9251
[9]
Hosur P, Parameswaran S A, Vishwanth A 2012 Phys. Rev. Lett. 108 046602
[10]
Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805
[11]
Dean D P M, Cao Y, Liu X, Wall S, Zhu D, Mankowsky R, Thampy V, Chen X M, Vale J G, Casa D, Kim J, Said A H, Juhas P, Alonso-Mori R, Glownia J M, Robert A, Robinson J, Sikorski M, Song S, Kozina M, Lemke H, Patthey L, Owada S, Katayama T, Yabashi M, Tanaka Y, Togashi T, Liu J, Serrao C R, Kim B J, Huber L, Chang C L, McMorrow D F, Först M, Hill J P 2016 Nat. Mat. 15 601
[12]
Liu M, Hoffman J, Wang J, Zhang J X, Cheeseman B N, Bhattacharya1 A 2013 Sic. Rep. 3 1876
[13]
Zhi B, Gao G Y, Xu H R, Chen F, Tan X L, Chen P F, Wang L F, Wu W B 2014 ACS Appl. Mater. Interfaces 6 4603
[14]
Noheda B, Cox D E, Shirane G, Gao J, Ye Z G 2002 Phys. Rev. B 66 054104
[15]
Cao L H, Yao X, Xu Z 2007 Trans. Mater. Heat Treat. 28 1009 (in Chinese) [曹林洪, 姚熹, 徐卓 2007 材料热处理学报 28 1009]
[16]
Fang B J, Ding C L, Wu J, Du Q B, Ding J N, Zhao X Y, Xu H Q, Luo H S 2012 Eur. Phys. J. Appl. Phys. 57 30101
[17]
Wu T, Bur A, Zhao P, Mohanchandra K P, Wong K, Wang K L, Lynch C S, Carman G P 2011 Appl. Phys. Lett. 98 012504
[18]
Das S, Herklotz A, Guo E J, Dörr K 2014 J. Appl. Phys. 115 143902
[19]
Zheng R K, Wang J, Zhou X Y, Wang Y, Chan H L W, Choy C L, Luo H S 2006 J. Appl. Phys. 99 123714
[20]
Thiele C, Dörr K, Fähler S, Schultz L, Meyer D C, Levin A A, Paufler P 2005 Appl. Phys. Lett. 87 262502
[21]
Thiele C, Dörr K, Bilani O, Rödel J, Schultz L 2007 Phys. Rev. B 75 054408
[22]
Dörr K, Thiele C, Bilani O, Herklotz A, Schultz L 2007 J. Magn. Magn. Mater. 310 1182
[23]
Dörr K, Zeneli O B, Herklotz A, Rata A D, Boldyreva K, Kim J W, Dekker M C, Nenkov K, Schultz L, Reibold M 2009 Eur. Phys. J. B 71 361
[24]
Zheng R K, Wang Y, Wang J, Wong K S, Chan H L W, Choy C L, Luo H S 2006 Phys. Rev. B 74 094427
[25]
Zheng R K, Chao C, Chan H L W, Choy C L, Luo H S 2007 Phys. Rev. B 75 024110
[26]
Zheng R K, Wang Y, Chan H L W, Choy C L, Luo H S 2007 Phys. Rev. B 75 212102
[27]
Zheng R K, Wang Y, Chan H L W, Choy C L, Luo H S 2008 Appl. Phys. Lett. 92 082908
[28]
Zheng R K, Habermeier H U, Chan H L W, Choy C L, Luo H S 2009 Phys. Rev. B 79 104433
[29]
Zheng R K, Jiang Y, Wang Y, Chan H L, Choy C L, Luo H S 2009 Phys. Rev. B 79 174420
[30]
Zheng R K, Habermeier H U, Chan H L W, Choy C L, Luo H S 2010 Phys. Rev. B 81 104427
[31]
Zheng R K, Wang Y, Chan H L W, Choy C L, Luo H S 2010 J. Appl. Phys. 108 124103
[32]
Zhu Q X, Wang W, Yang S W, Li X M, Wang Y, Habermeier H U, Luo H S, Chan H L W, Zheng R K 2012 Appl. Phys. Lett. 101 172906
[33]
Zheng R K, Dong S N, Wu Y Q, Zhu Q X, Wang Y, Chan H L W, Li X M, Luo H S, Li X G 2012 Thin Solid Films 525 45
[34]
Zheng R K, Wang Y, Habermeierc H U, Chan H L W, Li X M, Luo H S 2012 J. Alloys Compd. 519 77
[35]
Zheng R K, Wang Y, Liu Y K, Gao G Y, Fei L F, Jiang Y, Chan H L W, Li X M, Luo H S, Li X G 2012 Mater. Chem. Phys. 133 42
[36]
Zhu Q X, Yang M M, Zheng M, Wang W, Wang Y, Li X M, Luo H S, Li X G, Chan H L W, Zheng R K 2013 J. Alloys Compd. 581 530
[37]
Zhu Q X, Zheng M, Wang W, Yang M M, Wang Y, Li X M, Luo H S, Li X G, Chan H L W, Zheng R K 2013 J. Appl. Phys. 114 073904
[38]
Zheng M, Li X Y, Yang M M, Zhu Q X, Wang Y, Li X M, Shi X, Chan H L W, Li X G, Luo H S, Zheng R K 2013 Appl. Phys. Lett. 103 263507
[39]
Zheng M, Yang M M, Zhu Q X, Li X Y, Gao G Y, Zheng R K, Wang Y, Li X M, Shi X, Luo H S, Li X G 2014 Phys. Rev. B 90 224420
[40]
Zheng R K, Zhou X Y, Wang Y, Choy C L, Luo H S 2007 Ferroelectrics 357 87
[41]
Zheng R K, Wang Y, Chan H L W, Choy C L, Luo H S 2007 Appl. Phys. Lett. 90 152904
[42]
Zheng R K, Jiang Y, Wang Y, Chan H L W, Choy C L, Luo H S 2008 Appl. Phys. Lett. 93 102904
[43]
Zheng R K, Wang Y, Chan H L W, Choy C L, Habermeier H U, Luo H S 2010 J. Appl. Phys. 108 033912
[44]
Zhu Q X, Wang W, Zhao X Q, Li X M, Wang Y, Luo H S, Chan H L W, Zheng R K 2012 J. Appl. Phys. 111 103702
[45]
Sheng Z G, Gao J, Sun Y P 2009 Phys. Rev. B 79 174437
[46]
Chen L P, Gao J 2011 Europhys. Lett. 93 47009
[47]
Wang S Y, Gao J 2011 Europhys. Lett. 95 57001
[48]
Guo E J, Gao J, Lu H B 2011 Appl. Phys. Lett. 98 081903
[49]
Guo E J, Gao J, Lu H B 2011 Europhys.Lett. 95 47006
[50]
Wang S Y, Gao J 2012 Europhys. Lett. 97 57009
[51]
Wu Z P, Wang L, Guo E J, Gao J 2012 J. Appl. Phys. 111 07E105
[52]
Wang J F, Jiang Y C, Wu Z P, Gao J 2013 Appl. Phys. Lett. 102 071913
[53]
Jiang T, Yang S W, Liu Y K, Yin Y W, Dong S N, Zhao W B, Li X G 2013 Appl. Phys. Lett. 5 053504
[54]
Zhao W B, Zhang D L, Meng D C, Huang W C, Feng L, Hou C M, Lu Y L, Yin Y W, Li X G 2016 Appl. Phys. Lett. 26 263502
[55]
Yang Y J, Yang M M, Luo Z L, Huang H L, Wang H B, Bao J, Hu C S, Pan G Q, Yao Y K, Li X G, Zhang S, Zhao Y G, Gao C 2012 Appl. Phys. Lett. 100 043506
[56]
Yang Y J, Luo Z L, Yang M M, Huang H L, Wang H B, Bao J, Pan G Q, Gao C, Hao Q, Wang S T, Jokubaitis M, Zhang W Z, Xiao G, Yao Y P, Liu Y K, Li X G 2013 Appl. Phys. Lett. 102 033501
[57]
Xue X, Zhou Z Y, Dong G H, Feng M M, Zhang Y J, Zhao S S, Hu Z Q, Ren W, Ye Z G, Liu Y H, Liu M 2017 ACS Nano 11 9286
[58]
Zhu M M, Zhou Z Y, Xue X, Guan M M, Xian D, Wang C Y, Hu Z Q, Jiang Z D, Ye Z G, Ren W, Liu M 2017 Appl. Phys. Lett. 111 102903
[59]
Zhu M, Hu Z, Li C, Xue X, Yang G, Ren W, Ye Z G, Zhou Z, Liu M 2018 IEE Magn. Lett. 9 2501105
[60]
Wang J, Hu F X, Chen L, Sun J R, Shen B G 2011 J. Appl. Phys. 109 07D715
[61]
Zhao Y Y, Wang J, Hu F X, Kuang H, Wu R R, Zheng X Q, Sun J R, Shen B G 2014 J. Appl. Phys. 115 17D708
[62]
Zhao Y Y, Wang J, Kuang H, Hu F X, Zhang H R, Liu Y, Zhang Y, Wang S H, Wu R R, Zhang M, Bao L F, Sun J R, Shen B G 2014 Sic. Rep. 4 7075
[63]
Zhao Y Y, Wang J, Kuang H, Hu F X, Liu Y, Wu R R, Zhang X X, Sun J R, Shen B G 2015 Sic. Rep. 5 9668
[64]
Wang J, Hu F X, Li R W, Sun J R, Shen B G 2010 Appl. Phys. Lett. 96 052501
[65]
Wang J, Hu F X, Chen L, Zhao Y Y, Lu H X, Sun J R, Shen B G 2013 Appl. Phys. Lett. 102 022423
[66]
Qiao K M, Li J, Liu Y, Kuang H, Wang J, Hu F X, Sun J R, Shen B G 2018 J. Magn. Magn. Mater. 456 439
[67]
Chen L, Hu F X, Wang J, Shen J, Sun J R, Shen B G, Yin J H, Pan L Q 2011 J. Appl. Phys. 109 07D713
[68]
Chen Q P, Yang J J, Zhao Y G, Zhang S, Wang J W, Zhu M H, Yu Y, Zhang X Z, Wang Z, Yang B, Xie D, Ren T L 2011 Appl. Phys. Lett. 98 172507
[69]
Zhou W P, Xiong Y Q, Zhang Z M, Wang D H, Tan W S, Cao Q Q, Qian Z H, Du Y W 2016 ACS Appl. Mater. Interfaces 8 5424
[70]
Li Q, Wang D H, Cao Q Q, Du Y W 2017 Chin. Phys. B 26 097502
[71]
Jia R R, Zhang J C, Zheng R K, Deng D M, Habermeier H U, Chan H L W, Luo H S, Cao S X 2010 Phys. Rev. B 82 104418
[72]
Li W, Dong X L, Wang S H, Jin K X 2016 Appl. Phys. Lett. 109 091907
[73]
Guo Q, Xu X G, Wang F, Lu Y, Chen J, Wu Y, Meng K K, Wu Y, Miao J, Jiang Y 2018 Nanotechnology 29 224003
[74]
Nan T, Liu M, Ren W, Ye Z G, Sun N X 2014 Sci. Rep. 4 5931
[75]
Petraru A, Soni, R, Kohlstedt H 2014 Appl. Phys. Lett. 105 092902
[76]
Shastry S, Srinivasan G, Bichurin M I, Petrov V M, Tatarenko A S 2004 Phys. Rev. B 70 064416
[77]
Petrov V M, Srinivasan G, Galkina T A 2008 J. Appl. Phys. 104 113910
[78]
Petrov V M, Srinivasan G 2014 Phys. Rev. B 90 144411
[79]
Wang P, Jin C, Zheng D X, Li D, Gong J L, Li P, Bai H L 2016 ACS Appl. Mater. Interfaces 8 24198
[80]
Zavaliche F, Zhao T, Zheng H, Straub F, Cruz M P, Yang P L, Hao D, Ramesh R 2007 Nano Lett. 7 1586
[81]
Yang J J, Zhao Y G, Tian H F, Luo L B, Zhang H Y, He Y J, Luo H S 2009 Appl. Phys. Lett. 94 212504
[82]
Park J H, Lee J H, Kim M G, Jeong Y K, Oak M A, Jang H M, Choi H J, Scott J F 2010 Phys. Rev. B 81 134401
[83]
Park J H, Jeong Y K, Ryu S, Son J Y, Jang H M 2010 Appl. Phys. Lett. 96 192504
[84]
Ding H, Cheah J W, Chen L, Sritharan T, Wang J L 2012 Thin Solid Films 522 420
[85]
Kim J, Yao L, Dijken S 2013 J. Phys.: Condens. Matter 25 082205
[86]
Wang Z G, Yang Y D, Viswan R, Li J F, Viehland D 2011 Appl. Phys. Lett. 99 043110
[87]
Wang Z G, Viswan R, Hu B L, Li J F, Harris V G, Viehland D 2012 J. Appl. Phys. 111 034108
[88]
Wang Z, Wang Y, Ge W, Li J, Viehland D 2013 Appl. Phys. Lett. 103 132909
[89]
Wang Z G, Zhang Y, Viswan R, Li Y X, Luo H S, Li J F, Viehland D 2014 Phys. Rev. B 89 035118
[90]
Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826
[91]
Liu M, Obi O, Lou J, Stoute S, Cai Z, Ziemer K, Sun N X 2009 J. Phys. D: Appl. Phys. 42 045007
[92]
Zhang Y J, Liu M, Zhang L, Zhou Z Y, Peng B, Wang C Y, Lin Q J, Jiang Z D, Ren W, Ye Z G 2017 Appl. Phys. Lett. 110 082902
[93]
Tkach A, Yazdi M B, Foerster M, Büttner F, Vafaee M, Fries M, Kläui M 2015 Phys. Rev. B 91 024405
[94]
Yang Y J, Luo Z L, Huang H L, Gao Y C, Bao J, Li X G, Zhang S, Zhao Y G, Chen X C, Pan G Q, Gao C 2011 Appl. Phys. Lett. 98 153509
[95]
Yang Y J, Yang M M, Luo Z L, Hu C S, Bao J, Huang H L, Zhang S, Wang J W, Li P S, Liu Y, Zhao Y G, Chen X C, Pan G Q, Jiang T, Liu Y K, Li X G, Gao C 2014 J. Appl. Phys. 115 173505
[96]
Tatarenko A S, Ustinov A P, Srinivasan G, Petrov V M, Bichurin M I 2010 J. Appl. Phys. 108 063923
[97]
Xue X, Dong G, Zhou Z, Xian D, Hu Z, Ren W, Ye X G, Chen W, Jiang Z D, Liu M 2017 ACS Appl. Mater. Interfaces 9 43188
[98]
Tan Y, Liang K, Mei Z, Zhou P, Liu Y, Qi Y, Ma Z, Zhang T 2018 Ceram. Int. 44 5564
[99]
Hockel J L, Pollard S D, Wetzlar K P, Wu T, Zhu Y, Carman G P 2013 Appl. Phys. Lett. 102 242901
[100]
Gilbert I, Chavez A C, Pierce D T, Unguris J, Sun W Y, Liang C Y, Carman G P 2016 Appl. Phys. Lett. 109 162404
[101]
Tkach A, Kehlberger A, Büttner F, Jakob G, Eisebitt S, Kläui M 2015 Appl. Phys. Lett. 106 0624044
[102]
Tkach A, Kehlberger A, Büttner F, Jakob G, Eisebitt S, Kläui M 2016 Ferroelectrics 499 135
[103]
Tkach A, Kehlberger A, Büttner F, Jakob G, Eisebitt S, Kläui M 2016 J. Phys. D: Appl. Phys. 49 335004
[104]
Gao Y, Hu J M, Wu L, Nan C W 2015 J. Phys.: Condens. Matter 27 504005
[105]
Chen S Y, Zhang H Q, Ye Q Y, Hu Z Q, Huang Z G, Sun N X 2016 J. Alloys Compd. 656 871
[106]
Zhang N, Hou W W, Ye Q Y, Han S, Chen S Y, Huang Z G, Zhang H Q 2017 Appl. Phys. 7 31 (in Chinese) [张旎, 侯薇薇, 叶晴莹, 韩森, 陈水源, 黄志高, 张慧钦 2017 应用物理 7 31]
[107]
Shen J, Shang D, Chai Y, Wang Y, Cong J, Shen S, Yan L, Wang W, Sun Y 2016 Phys. Rev. Appl. 6 064028
[108]
Feng M, Jiang L Y, Sun X D, Zhao X, Xu H 2018 Jinlin Normal Univ. J. (Nat. Sci. Ed.) 2 8 (in Chinese) [冯明, 姜立月, 孙晓东, 赵雪, 徐航 2018 吉林师范大学报 2 8]
[109]
Xiang J S, Ye J, Yang Y L, Xie Y, Li W, Chen Z Y 2016 J. Phys. D: Appl. Phys. 49 325002
[110]
Conte R L, Xiao Z, Chen C, Stan C V, Gorchon J, El-Ghazaly A, Nowakowski M E, Sohn H, Pattabi A, Scholl A, Tamura N, Sepulveda A, Carman G P, Candler P, Candler R N, Bokor J 2018 Nano Lett. 18 1952
[111]
Yang S, Feng L, Zhang D, Huang W, Dong S, Wang J, Zou L, Li X, Nan C 2015 J. Alloys Compd. 646 472
[112]
D’Souza N, Salehi F M, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069
[113]
Zhou C, Zhang C, Yao J, Jiang C 2016 Appl. Phys. Lett. 109 112404
[114]
Zhou W, Ma C, Gan Z, Zhang Z, Wang X, Tan W, Wang D 2017 Appl. Phys. Lett. 111 052401
[115]
Jiang C, Jia C, Wang F, Zhou C, Xue D 2018 Phys. Rev. B 97 060408
[116]
Yang S W, Peng R C, Jiang T, Liu Y K, Feng L, Wang J J, Chen L Q, Li X G, Nan C W 2014 Adv. Mater. 26 7091
[117]
Zhou C, Shen L, Liu M, Gao C, Jia C, Jiang C 2018 Phys. Rev. Appl. 9 014006
[118]
Zhang C, Wang F, Dong C, Gao C, Jia C, Jiang C, Xue D 2015 Nanoscale 7 4187
[119]
Avula S R V, Heidler J, Dreiser J, Vijayakumar J, Howald L, Nolting F, Piamonteze C 2018 J. Appl. Phys. 123 064103
[120]
Kim J H, Ravindranath V, Shin S C 2007 Phys. Status Solidi A 204 4202
[121]
Kim J H, Ryu K S, Jeong J W, Shin S C 2010 Appl. Phys. Lett. 97 252508
[122]
Teferi M Y, Amaral V S, Lounrenco A C, Das S, Amaral J S, Karpinsky D V, Soares N, Sobolev N A, Kholkin A L, Tavares P B 2012 J. Magn. Magn. Mater. 324 1882
[123]
Schleicher B, Niemann R, Diestel A, Hühne R, Schultz L, Fähler S 2015 J. Appl. Phys. 118 053906
[124]
Schleicher B, Niemann R, Schwabe S, Hühne R, Schultz L, Nielsch K, Fähler S 2017 Sci. Rep. 7 14462
[125]
Du Z, Zhang S, Wang L, Zhao D 2013 Thin Solid Films 544 230
[126]
Feng M, Hu J, Wang J, Li Z, Shu L, Nan C W 2013 Appl. Phys. Lett. 103 192903
[127]
Gao Y, Hu J, Shu L, Nan C W 2014 Appl. Phys. Lett. 104 142908
[128]
Zi?tek S, Ch?ciński, Frankowski M, Skowroński W 2017 J. Magn. Magn. Mater. 428 64
[129]
Zi?tek S, Ogrodnik P, Skowroński W, Stobiecki F, van Dijken S, Barna? J, Stobiecki T 2016 Appl. Phys. Lett. 109 072406
[130]
Gao Y, Hu J M, Nelson C T, Yang T N, Shen Y, Chen L Q, Ramesh R, Nan C W 2016 Sci. Rep. 6 23696
[131]
Yang Y T, Zhang Q M, Wang D H, Song Y Q, Wang L Y, Lü L Y, Cao Q Q, Du Y W 2013 J. Appl. Phys. 103 082404
[132]
Yang Y T, Li J, Peng X L, Wang X Q, Wang D H, Cao Q Q, Du Y W 2016 J. Appl. Phys. 119 073909
[133]
Wang D H, Yang Y T, Cao Q Q, Dou Y W 2014 Jinlin Normal Univ. J. (Nat. Sci. Ed.) 2 11 (in Chinese) [王敦辉, 杨艳婷, 曹庆琪, 都有为 2014 吉林师范大学学报 2 11]
[134]
Jiang C, Yang C, Wang F, Zhou C, Zhang C, Zhao Z, Xue D 2015 J. Phys. D: Appl. Phys. 48 255002
[135]
Yang W G, Morley N A, Sharp J, Tian Y, Rainforth W M 2016 Appl. Phys. Lett. 108 012901
[136]
Jin T, Hao L, Cao J, Liu M, Dang H, Wang Y, Wu D, Bai J, Wei F 2014 Appl. Phys. Express 7 043002
[137]
Phuoc N N, Ong C K 2015 J. Appl. Phys. 117 213905
[138]
Phuoc N N, Ong C K 2016 J. Electron. Mater. 45 4999
[139]
Yang C, Wang F, Zhang C, Zhou C, Jiang C 2015 J. Phys. D: Appl. Phys. 48 435001
[140]
Jin T, Cao J, Hao L, Liu M, Wang Y, Wu D, Bai J, Wei F 2015 IEEE Trans. Magn. 5 1
[141]
Zhu G, Wong K L, Zhao J, Amiri P K, Wang K L, Hockel J, Carman G P, Zhu J, Krivorotov I 2012 J. Appl. Phys. 112 033916
[142]
Zhang S, Zhao Y G, Li P S, Yang J J, Rizwan S, Zhang J X, Seidel J, Qu T L, Yang Y J, Luo Z L, He Q, Zou T, Chen Q P, Wang J W, Yang L F, Sun Y, Wu Y Z, Xiao X, Jin X F, Huang J, Gao C, Han X F, Ramesh R 2012 Phys. Rev. Lett. 108 137203
[143]
Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T, Sun N X 2013 Adv. Mater. 25 4886
[144]
Zhang S, Zhao Y, Xiao X, Wu Y, Rizwan S, Yang L, Li P, Wang J, Zhu M, Zhang H, Jin X, Han X 2014 Sci. Rep. 4 3727
[145]
He H, Zhao J T, Luo Z L, Yang Y J, Xu H, Hong B, Wang L X, Wang R X, Gao C 2016 Chin. Phys. Lett. 33 067502
[146]
Ba Y, Liu Y, Li P, Wu L, Unguris J, Pierce D T, Yang D, Feng C, Zhang Y, Wu H, Li D, Chang Y, Zhang J, Han X, Cai J, Nan C W, Zhao Y G 2018 Adv. Funct. Mater. 28 1706448
[147]
Phuoc N N, Ong C K 2014 Appl. Phys. Lett. 105 022905
[148]
Vargas J M, Gómez J 2014 APL Mater. 2 106105
[149]
Liu M, Hao L, Jin T, Cao J, Bai J, Wu D, Wang Y, Wei F 2015 Appl. Phys. Express 8 063006
[150]
Yang Y T, Li J, Peng X L, Hong B, Wang X Q, Ge H L, Wang D H, Du Y W 2017 AIP Advances 7 055833
[151]
Zhao X, Wen J, Yang B, Zhu H, Cao Q, Wang D, Qian Z, Du Y 2017 ACS Appl. Mater. Interfaces 9 36038
[152]
Yang Y, Yao Y, Chen L, Huang H, Zhang B, Lin H, Luo Z, Gao C, Lu Y L, Li X, Xiao G, Feng C, Zhao Y G 2018 Appl. Phys. Lett. 112 033506
[153]
Chen S Y, Zheng Y X, Ye Q Y, Xuan H C, Cao Q Q, Deng Y, Wang D H, Du Y W, Huang Z G 2011 J. Alloys Compd. 509 8885
[154]
Yang Y T, Song Y Q, Wang D H, Gao J L, Lü L Y, Cao Q Q, Du Y W 2014 J. Appl. Phys. 115 024903
[155]
Yang Y T, Wang D H, Song Y Q, Gao J L, Lü L Y, Cao Q Q, Du Y W 2013 J. Appl. Phys. 114 144902
[156]
Seguin D, Sunder M, Krishna L, Tatarenko A, Moran P D 2009 J. Cryst. Growth 311 3235
[157]
Fitchorov T, Chen Y, Hu B, Gillette S M, Geiler A, Vittoria C, Harris V G 2011 J. Appl. Phys. 110 123916
[158]
Ahmad H, Atulasimha J, Bandyopadhyay S 2015 Nanotechnology 26 401001
[159]
Ahmad H, Atulasimha J, Bandyopadhyay S 2015 Sci. Rep. 5 18264
[160]
Zhang Y, Huang C, Turghun M, Duan Z, Wang F, Shang W 2018 Appl. Phys. A 124 289
[161]
Jia C, Wang F, Jiang C, Berakdar J, Xue D 2015 Sci. Rep. 5 11111
[162]
Lee Y, Liu Z Q, Heron J T, Clarkson J D, Hong J, Ko C, Biegalski M D, Aschauer U, Hsu S L, Nowakowski M E, Wu J, Christen H M, Salahuddin S, Bokor J B, Spaldin N A, Schlom D G, Ramesh R 2015 Nat. Commun. 6 5959
[163]
Hu Q B, Li J, Wang C C, Zhou Z J, Cao Q Q, Zhou T J, Wang D H, Du Y W 2017 Appl. Phys. Lett. 110 222408
[164]
Fina I, Quintana A, Padilla-Pantoja J, Martí X, Macià F, Sánchez F, Foerster M, Aballe L, Fontcuberta J, Sort J 2017 ACS Appl. Mater. Interfaces 9 15577
[165]
Xie Y, Zhan Q, Shang T, Yang H, Liu Y, Wang B, Li R W 2018 AIP Adv. 8 055816
[166]
Phuoc N N, Ong C K 2015 J. Appl. Phys. 117 064108
[167]
Nan T, Emori S, Peng B, Wang X, Hu Z, Xie L, Gao Y, Lin H, Jiao J, Luo H, Budil D, Jones J G, Howe B M, Brown G J, Liu M, Sun N 2016 Appl. Phys. Lett. 108 012406
[168]
Phuoc N N, Ong C K 2018 Appl. Phys. A 124 213
[169]
Liu Y, Hu F, Zhang M, Wang J, Shen F, Zuo W, Zhang J, Sun J, Shen B 2017 Appl. Phys. Lett. 110 022401
[170]
Kim J W, Kim J H, You C Y, Shin S C 2017 Curr. Appl. Phys. 17 940
[171]
Zhou C, Duanzhu G, Yao J, Jiang C 2017 J. Alloys Compd. 710 680
[172]
Zhou C, Wang F, Duanzhu G, Yao J, Jiang C 2016 J. Phys. D: Appl. Phys. 49 455001
[173]
Wei M, Li M, Zhu Y, Zhao M, Wang Q, Zhang F, Zhang Y, Hu Z, Jiang R, Zhao D 2016 J. Alloys Compd. 676 96
[174]
Wen D, Zhang H, Yang X, Lü Q, Bai F 2017 J. Alloys Compd. 690 836
[175]
Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120
[176]
Dusch Y, Tiercelin N, Klimov A, Giordano S, Preobrazhensky V, Pernod P 2013 J. Appl. Phys. 113 17C719
[177]
Han X, Xi L, Li Y, Guo X, Li D, Wang Z, Zuo Y, Xue D 2014 Appl. Phys. Lett. 105 122402
[178]
Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H, Wang K Y 2017 Nat. Mater. 16 712
[179]
Li Q, Tan A, Scholl A, Young A T, Yang M, Hwang C, N’Diaye A T, Arenholz E, Li J, Qiu Z Q 2017 Appl. Phys. Lett. 110 262405
[180]
Phuoc N N, Ong C K 2017 Mater. Res. Express 4 066101
[181]
Sun Y, Ba Y, Chen A, He W, Wang W, Zheng X, Zou L, Zhang Y, Yang Q, Yan L, Feng C, Zhang Q, Cai J, Wu W, Liu M, Gu L, Cheng Z, Nan C W, Qiu Z, Wu Y, Li J, Zhao Y 2017 ACS Appl. Mater. Interfaces 9 10855
[182]
Vargas J M, Gómez J E, Avilés-Félix L, Butera A 2017 AIP Adv. 7 055911
[183]
Xiao X, Sun L, Luo Y M, Zhang D, Liang J H, Wu Y Z 2018 J. Phys. D: Appl. Phys. 51 115001
[184]
Zhou Z, Zhao S, Gao Y, Wang X, Nan T, Sun N X, Yang X, Liu M 2016 Sci. Rep. 5 204501
[185]
Syed R, Zhang S, Yu T, Zhao Y G, Zhang S F, Han X F 2013 J. Appl. Phys. 113 023911
[186]
Kim H K D, Schelhas L T, Keller S, Hockel J L, Tolbert S H, Carman G P 2013 Nano Lett. 13 884
[187]
Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2017 Nano Lett. 17 3478
[188]
Fang H, Xu C, Ding J, Li Q, Sun J L, Dai J Y, Ren T L, Yan Q 2016 ACS Appl. Mater. Interfaces 8 32934
[189]
Hu J M, Li Z, Chen L Q, Nan C W 2011 Nat. Commun. 2 553
[190]
Chen Y, Gao J, Lou J, Liu M, Yoon S D, Geiler A L, Nedoroscik M, Heiman D, Sun N X, Vittoria C, Harris V G 2009 J. Appl. Phys. 105 07A510
[191]
Jiang C, Zhang C, Dong C, Guo D, Xue D 2015 Appl. Phys. Lett. 106 122406
[192]
Wu S Z, Miao J, Xu X G, Yan W, Reeve R, Zhang X H, Jiang 2015 Sci. Rep. 5 8905
[193]
Domann J P, Sun W Y, Schelhas L T, Carman G P 2016 J. Appl. Phys. 120 143904
[194]
Gao Y, Wang X, Xie L, Hu Z, Lin H, Zhou Z, Nan T, Yang X, Howe B M, Jones J G, Brown G J, Sun N X 2016 Appl. Phys. Lett. 108 232903
[195]
Heo S, Oh C, Eom M J, Kim J S, Ryu J, Son J, Jang H M 2016 Sci. Rep. 6 22228
[196]
Hong B, Yang Y, Zhao J, Hu K, Peng J, Zhang H, Liu W, Luo Z, Huang H, Li X, Gao C 2016 Mater. Lett. 169 110
[197]
Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188
[198]
Xiong R, Fang B, Li G, Xiao Y, Tang M, Li Z 2017 Appl. Phys. Lett. 111 062401
[199]
Syed R, Zhang S, Yu T, Zhao Y G, Zhang S F, Han X F 2017 Chin. Phys. Lett. 28 107308
[200]
Dekker M C, Herklotz A, Schultz L, Reibold M, Vogel K, Biegalski M D, Christen H M, Dörr K 2011 Phys. Rev. B 84 054463
[201]
Zhang W, Yang M M, Liang X, Zheng H W, Wang Y, Gao W X, Yuan G L, Zhang W F, Li X G, Luo H S, Zheng R K 2015 Nano Energy 18 315
[202]
Wang J, Huang Q K, Lu S Y, Tian Y F, Chen Y X, Bai L H, Dai Y, Yan S S 2018 Appl. Phys. Lett. 112 152904
[203]
Zhang Y, Gao G, Chan H L W, Dai J, Wang Y, Hao J 2012 Adv. Mater. 24 1729
[204]
Wu Z, Zhang Y, Bai G, Tang W, Gao J, Hao J 2014 Opt. Express 22 29014
[205]
Wang F F, Liu D, Chen Z, Duan Z, Zhang Y, Sun D, Zhao X, Shi W, Zheng R K, Luo H 2017 J. Mater. Chem. C 5 9115
[206]
Bai G, Zhang Y, Hao J H 2014 Sci. Rep. 4 5724
[207]
Park N, Kang H, Park J, Lee Y, Yun Y, Lee J, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729
[208]
Fang H, Lin Z, Wang X, Tang C Y, Chen Y, Zhang F, Chai Y, Li Q, Yan Q, Chan H L W, Dai J Y 2015 Opt. Express 23 31908
[209]
Jie W, Hao J H 2018 Nanoscale 10 328
[210]
Jie W, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H 2013 J. Phys. Chem. C 117 13747
[211]
Zhu Q X, Yang M M, Zheng M, Zheng R K, Guo L J, Wang Y, Zhang J X, Li X M, Luo H S, Li X G 2015 Adv. Funct. Mater. 25 1111
[212]
Chen L, Zhao W Y, Wang J, Gao G Y, Zhang J X, Wang Y, Li X M, Cao S X, Li X G, Luo H S, Zheng R K 2016 ACS Appl. Mater. Interfaces 8 26932
[213]
Ni H, Zheng M, Chen L P, Huang W Y, Qi Y P, Zeng J L, Tang Z H, Lu H B, Gao J 2017 Appl. Phys. Lett. 110 213503
[214]
Hühne R, Okai D, Dörr K, Trommler S, Herklotz A, Holzapfel B, Schultz L 2008 Supercond. Sci. Technol. 21 075020
[215]
Trommler S, Hühne R, Iida K, Pahlke P, Haindl S, Schultz L, Holzapfel B 2010 New J. Phys. 12 103030
[216]
Yu Y, Zhang X, Wang J W, Zhao Y G 2012 J. Cryst. Growth 354 98
[217]
Huhtinen H, Palonen H, Malmivirta M, Jha R, Awana V P S, Paturi P 2015 IEEE Trans. Appl. Supercond. 25 6605405
[218]
Lin Z, Mei C, Wei L, Sun Z, Wu S, Huang H, Zhang S, Liu C, Feng Y, Tian H, Yang H, Li J, Wang Y, Zhang G, Lu Y, Zhao Y G 2015 Sci. Rep. 5 14133
数据正在加载中...
中国物理学会期刊网