中国物理学会期刊网
物理学报  2018, Vol.67 Issue (21): 218201  DOI:10.7498/aps.67.20181636
新型机械解理方法在二维材料研究中的应用
1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;2. 中国地质大学(北京)数理学院, 北京 100083;3. 中央民族大学理学院, 北京 100081;4. 中北大学环境与安全工程学院, 太原 030051>
Applications of new exfoliation technique in study of two-dimensional materials
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;2. School of Science, China University of Geosciences, Beijing 100083, China;3. College of Science, Minzu University of China, Beijing 100081, China;4. School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China>

摘要

自从石墨烯被发现以来,机械解理技术已经成为制备高质量二维材料的重要方法之一,在二维材料本征物性的研究方面展现出了独特的优势.然而传统机械解理方法存在明显的不足,如制备效率低、样品尺寸小等,阻碍了二维材料领域的研究进展.近些年我们在机械解理技术方面取得了一系列的突破,独立发展了一套具有普适性的新型机械解理方法.这种新型机械解理方法的核心在于通过改变解理过程中的多个参数,增强层状材料与基底之间的范德瓦耳斯相互作用,从而提高单层样品的产率和面积.本文着重以石墨烯为例,介绍了该技术的过程和机理.相比于传统机械解理方法,石墨烯的尺寸从微米量级提高到毫米量级,面积提高了十万倍以上,产率大于95%,同时石墨烯依然保持着非常高的质量.这种新型机械解理方法具有良好的普适性,目前已经在包括MoS2,WSe2,MoTe2,Bi2212等几十种材料体系中得到了毫米量级以上的高质量单层样品.更重要的是,在解理过程中,通过调控不同的参数,可以在层状材料中实现一些特殊结构的制备,如气泡、褶皱结构等,为研究这些特殊材料体系提供了重要的物质保障.未来机械解理技术还有很多值得深入研究的科学问题,该技术的突破将会极大地推动二维材料领域的研究进展.

Abstract

Since the discovery of graphene, mechanical exfoliation technology has become one of the important methods of preparing high-quality two-dimensional (2D) materials. This technology shows some unique advantages in the study of the intrinsic properties of 2D materials. However, traditional mechanical exfoliation method also has some obvious deficiencies, such as low yield ratio and small size of the resulting single-or few-layer flakes, which hinders the research progress in the field of 2D materials. In recent years, we made a series of breakthroughs in mechanical exfoliation technology, and independently developed a new type of mechanical exfoliation method with universality. The core of this new method is to enhance the van der Waals interaction between the layered material and the substrate by changing multiple parameters in the exfoliation process, thereby increasing the yield ratio and area of the monolayer. Taking graphene for example, we can now increase the size of graphene from micron to millimeter, increase over 100000 times in area, and yield ratio more than 95%, in the meantime graphene still maintains very high quality. This new mechanical exfoliation method shows great universality, and high-quality monolayer flake with a size of millimeters or more has been obtained in dozens of layered material systems including MoS2, WSe2, MoTe2, and Bi2212. More importantly, some special structures can be fabricated by optimizing exfoliation parameters, such as bubble and wrinkle structures, which paves the way for the study of these special material systems. Many scientific problems are still worth exploring in the mechanical exfoliation technology, and the breakthrough of this technology will greatly promote the research progress in the field of 2D materials.
收稿日期:2018-09-01

基金资助

国家自然科学基金(批准号:11874405,61474141,11504439,11104255)和中央高校基本科研业务费专项资金资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11874405, 61474141, 11504439, 11104255) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.

引用本文

[中文]
许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用[J]. 物理学报, 2018, 67(21): 218201.
[英文]
Xu Hong, Meng Lei, Li Yang, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan. Applications of new exfoliation technique in study of two-dimensional materials[J]. Acta Phys. Sin., 2018, 67(21): 218201.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2]
Iijima S 1991 Nature 354 56
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4]
Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109
[5]
Zhang H 2015 ACS Nano 9 9451
[6]
Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7]
Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406
[8]
Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151
[9]
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312
[10]
Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128
[11]
Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68
[12]
Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705
[13]
Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135
[14]
Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403
[15]
Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109
[16]
Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389
[17]
Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927
[18]
Arthur J R 2002 Surf. Sci. 500 189
[19]
Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157
[20]
Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907
[21]
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507
[22]
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820
[23]
Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 物理学报 66 216802]
[24]
Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114
[25]
Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410
[26]
Dines M B 1975 Mater. Res. Bull. 10 287
[27]
Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457
[28]
Wang Q, O'Hare D 2012 Chem. Rev. 112 4124
[29]
Ma R, Sasaki T 2010 Adv. Mater. 22 5082
[30]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
[31]
Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420
[32]
Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272
[33]
Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624
[34]
Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563
[35]
Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95
[36]
Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718
[37]
Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700
[38]
Geim A K 2009 Science 324 1530
[39]
Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743
[40]
Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612
[41]
Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330
[42]
Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104
[43]
Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198
[44]
Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197
[45]
Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201
[46]
Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
[47]
Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[48]
Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238
[49]
Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401
[50]
Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
[51]
Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103
[52]
Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458
数据正在加载中...
中国物理学会期刊网