中国物理学会期刊网
物理学报  2018, Vol.67 Issue (24): 244203  DOI:10.7498/aps.67.20181591
中远红外非线性光学晶体研究进展
山东大学晶体材料研究所, 晶体材料国家重点实验室, 济南 250100
Research progress of mid-and far-infrared nonlinear optical crystals
State Key Laboratory of Crystal Materials, Institute of Crystal Materials Shandong University, Jinan 250100, China

摘要

3–5 μm和8–12 μm波段中远红外激光,在国防和民用领域均具有广泛的应用.作为全固态激光频率转换系统的核心部件,非线性光学晶体需要不断地优化和发展.本文从红外非线性光学晶体材料组成角度出发,总结了几种具有重大应用前景的磷族化合物(ZnGeP2,CdSiP2)、硫属化合物(CdSe,GaSe,LiInS2系列,BaGa4S7系列)以及准位相匹配晶体(OP-GaAs,OP-GaP)等中远红外波段非线性光学晶体的研究进展.

Abstract

High-power tunable mid-infrared (MIR) and far-infrared (FIR) lasers in a range of 3-20 μm, especially in the atmospheric windows of 3-5 μm and 8-12 μm are essential for the applications, such as in remote sensing, minimally invasive surgery, telecommunication, national security, etc. At present, the technology of MIR and FIR laser have become a research hotspot. As the core component of all-solid-state laser frequency conversion system, nonlinear optical (NLO) crystals for coherent MIR and FIR laser are urgently needed by continuously optimizing and developing. However, compared with several outstanding near infrared, visible, and ultraviolet NLO crystals, such as β-BaB2O4, LiB3O5, LiNbO3, KTiOPO4, and KBe2BO3F2, the generation of currently available NLO crystals for 3-20 μm laser is still underdeveloped. Traditional NLO oxide crystals are limited to output wavelengths ≤ 4 μm due to the multi-phonon absorption. In the past decades, the chalcopyrite-type AgGaS2, AgGaSe2 and ZnGeP2 have become three main commercial crystals in the MIR region due to their high second-harmonic generation coefficients and wide IR transparency ranges. Up to now, ZnGeP2 is still the state-of-the-art crystal for high energy and high average power output in a range of 3-8 μm. Unfortunately, there are still some intrinsic drawbacks that hinder their applications, such as in poor thermal conductivity and low laser damage threshold for AgGaS2, non-phase-matching at 1.06 μm pumping for AgGaSe2, and harmful two-photon absorption at 1.06 μm for ZnGeP2. In addition, ZnGeP2 has significant multi-phonon absorption in an 8-12 μm band, which restricts its applications in long wavelength MIR. With the development of research, several novel birefringent crystals, as well as all-epitaxial processing of orientation-patterned semiconductors GaAs (OP-GaAs) and GaP (OP-GaP), have been explored together with attractive properties, such as large NLO effect, wide transparency ranges, and high resistance to laser damage.
In this paper, from the angle of the compositions of NLO crystal materials, several kinds of phosphide crystals (ZnGeP2 CdSiP2) and chalcogenide crystals (CdSe, GaSe, LiInS2 series, and BaGa4S7 series) are summarized. In addition, the latest achievements of the orientation-patterned materials such as OP-GaAs and OP-GaP are also reviewed systematically. In summary, we review the above-mentioned attractive properties of these materials such as in the unique capabilities, the crystal growth, and the output power in the MIR and FIR region.
收稿日期:2018-08-27

基金资助

国家自然科学基金(批准号:51572155,11504389)、国家重点研发计划(批准号:2016YFB1102201)和高等学校学科创新引智计划2.0(批准号:BP2018013)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 51572155, 11504389), the National Key Research and Development Program of China (Grant No. 2016YFB1102201), and the 111 Project 2.0, China (Grant No. BP2018013).

引用本文

[中文]
贾宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展[J]. 物理学报, 2018, 67(24): 244203.
[英文]
Jia Ning, Wang Shan-Peng, Tao Xu-Tang. Research progress of mid-and far-infrared nonlinear optical crystals[J]. Acta Phys. Sin., 2018, 67(24): 244203.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Zhang C L 2017 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese) [张春丽 2017 硕士学位论文 (合肥: 中国科学技术大学)]
[2]
Zhang M 2012 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [张明 2012 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]
[3]
Wang T J 2007 Ph. D. Dissertation (Changchui: Jilin University) (in Chinese) [王铁军 2007 博士学位论文 (长春: 吉林大学)]
[4]
Xie G, Pang Y F, Wang W M, Wu D Y 2009 High Pow. Las. Part. Beams 21 970 (in Chinese) [谢刚, 彭跃峰, 王卫民, 武德勇 2009 强激光与粒子束 21 970]
[5]
Yin W L, Kang B, Deng J G 2014 High Pow. Las. Part. Beams 26 42 (in Chinese) [尹文龙, 康彬, 邓建国 2014 强激光与粒子束 26 42]
[6]
Zhang G D, Wang S P, Tao X T 2012 J. Synth. Cryst. 41 17 (in Chinese) [张国栋, 王善朋, 陶绪堂 2012 人工晶体学报 41 17]
[7]
Dong C M, Wang S P, Tao X T 2006 J. Synth. Cryst. 35 785 (in Chinese) [董春明, 王善朋, 陶绪堂 2006 人工晶体学报 35 785]
[8]
Ren G G 2000 Laser Infr. 30 323 (in Chinese) [任国光 2000 激光与红外 30 323]
[9]
Ning J 2017 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [宁建 2017 博士学位论文 (济南: 山东大学)]
[10]
Zhong M, Ren G 2007 Journal of Sichuan Ordnance 28 3 (in Chinese) [钟鸣, 任钢 2007 四川兵工学报 28 3]
[11]
Wang X 2014 Wing. Missil. J. 7 57 (in Chinese) (in Chinese) [王玺 2014 飞航导弹 7 57]
[12]
Schunemann P G, Zawilski K T, Pomeranz L A, Creeden D J, Budni P A 2016 J. Opt. Soc. Am. B 33 D36
[13]
Lan H, Liang F, Jiang X, Zhang C, Yu H, Lin Z, Zhang H, Wang J, Wu Y 2018 J. Am. Chem. Soc. 140 4684
[14]
Liu T, Qin J, Zhang G, Zhu T, Niu F, Wu Y, Chen C 2008 Appl. Phys. Lett. 93 091102
[15]
Zhang G, Qin J, Liu T, Li Y, Wu Y, Chen C 2009 Appl. Phys. Lett. 95 261104
[16]
Ye N, Tu C, Long X, Hong M 2010 Cryst. Growth Des. 10 4672
[17]
Liang F, Kang L, Lin Z, Wu Y 2017 Cryst. Growth Des. 17 2254
[18]
Isaenko L I, Yelisseyev A P 2016 Semicond. Sci. Technol. 31 123001
[19]
Wu H, Wang Z, Ni Y, Mao M, Huang C, Cheng X 2012 J. Cryst. Growth 353 158
[20]
Schunemann P G, Pollak T M 1997 J. Cryst. Growth 174 272
[21]
Zhang G, Tao X, Ruan H, Wang S, Shi Q 2012 J. Cryst. Growth 340 197
[22]
Isaenko L, Yelisseyev A, Lobanov S, Petrov V, Rotermund F, Zondy J J, Knippels G H M 2001 Mater. Sci. Semicond. Processing 4 665
[23]
Petrov V, Zondy J J, Bidault O, Isaenko L, Vedenyapin V, Yelisseyev A. Chen W D, Tyazhev A, Lobanov S, Marchev G, Kolker D 2010 J. Opt. Soc. Am. B 27 1902
[24]
Guo Y F, Zhou Y Q, Lin X S, Chen W D, Ye N 2014 Opt. Mater. 36 2007
[25]
Yao J, Yin W, Feng K, Li X, Mei D, Lu Q, Ni Y, Zhang Z, Hu Z, Wu Y 2012 J. Cryst. Growth 346 1
[26]
Zhao B J, Zhu S F, Li Z H, Yu F L, Zhu X H, Gao D Y 2001 Chin. Sci. Technol. 46 1132 (in Chinese) [赵北君, 朱世富, 李正辉, 于丰亮, 朱兴华, 高德友 2001 科学通报 46 1132]
[27]
Li G, Chu Y, Zhou Z 2018 Chem. Mater. 30 602
[28]
Hanna D C, Rampal V V, Smith R C 1973 Opt. Commun. 8 151
[29]
Wu H X, Huang F, Ni Y B, Wang Z Y, Mao M S, Cheng G C 2010 J. Synth. Cryst. 39 208 (in Chinese) [吴海信, 黄飞, 倪友保, 王振友, 毛明生, 程干超 2010 人工晶体学报 39 208]
[30]
Zhao B J, Zhu S F, He Z Y, Chen B J 2012 J. Synth. Cryst. 41 74 (in Chinese) [赵北君, 朱世富, 何知宇, 陈宝军 2012 人工晶体学报 41 74]
[31]
Boyd G, Kasper H, McFee J 1971 IEEE J. Quantum Electron. 7 563
[32]
Singh N B, Hopkins R H, Feichtner J D 1986 J. Mater. Sci. 21 837
[33]
Buehler E, Wernick J H, Wiley J D 1973 J. Electron. Mater. 2 445
[34]
Zhang J Q, Zhao B J, Zhu S F, Chen B J, He Z Y, Wang Z C, Yang D H, Cao X L, Cao L Q 2013 J. Synth. Cryst. 42 392 (in Chinese) [张建强, 赵北君, 朱世富, 陈宝军, 何知宇, 王志超, 杨登辉, 曹新玲, 曹礼强 2013 人工晶体学报 42 392]
[35]
Zhu C Q, Lei Z T, Yang C H 2012 J. Synth. Cryst. 41 160 (in Chinese) [朱崇强, 雷作涛, 杨春晖 2012 人工晶体学报 41 160]
[36]
Wu H X, Ni Y B, Geng L, Mao M S, Wang Z Y, Cheng G C, Yang L 2007 J. Synth. Cryst. 36 507 (in Chinese) [吴海信, 倪友保, 耿磊, 毛明生, 王振友, 程干超, 杨琳 2007 人工晶体学报 36 507]
[37]
Bliss D F, Harris M, Horrigan J, Higgins W M, Armington A F, Adamski J A 1994 J. Cryst. Growth 137 145
[38]
Zhang G, Tao X, Wang S, Shi Q, Ruan H, Chen L 2012 J. Cryst. Growth 352 67
[39]
Zhang G, Tao X, Wang S, Liu G, Shi Q, Jiang M 2011 J. Cryst. Growth 318 717
[40]
Lei Z, Okunev A O, Zhu C, Verozubova G A, Ma T, Yang A C 2016 J. Cryst. Growth 450 34
[41]
Zhong K, Li J S, Xu D G, Wang J L, Wang Z, Wang P, Yao J Q 2010 Optoelectron. Lett. 6 179
[42]
Zawilski K T, Schunemann P G, Setzler S D, Pollak T M 2008 J. Cryst. Growth 310 1891
[43]
Lei Z, Zhu C, Xu C, Yao B, Yang C 2014 J. Cryst. Growth 389 23
[44]
Haakestad M W, Arisholm G, Lippert E, Nicolas S, Rustad G, Stenersen K 2008 Opt. Express 16 14263
[45]
Dergachev A, Armstrong D, Smith A, Drake T, Dubois M 2007 Opt. Express 15 14404
[46]
Petrov V, Rotermund F, Noack F, Schunemann P 1999 Opt. Lett. 24 414
[47]
Schunemann P G 2007 Proc. SPIE 6455 64550R
[48]
Hemming A, Richards J, Davidson A, Carmody N, Bennetts S, Simakov N, Haub J 2013 Opt. Express 21 10062
[49]
Qian C P, Shen Y J, Yao B Q, Duan X M, Ju Y L, Wang Y Z 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, California USA, June 5--10, 2016 p1
[50]
Su N, Zhang M, Ren G, Liu Q X, Xing J G 2013 Opt. Technol. 39 359 (in Chinese) [苏宁, 张茂, 任钢, 刘全喜, 幸建国 2013 光学技术 39 359]
[51]
Wu S L, Zhao B J, Zhu S F, He Z Y, Chen B J, Yang H, Wang X Y, Sun N 2014 J. Synth. Cryst. 43 492 (in Chinese) [吴圣灵, 赵北君, 朱世富, 何知宇, 陈宝军, 杨辉, 王小元, 孙宁 2014 人工晶体学报 43 492]
[52]
Yang H, Zhu S F, Zhao B J, Chen B J, He Z Y, Fan L, Liu G Y, Wang X Y 2012 J. Synth. Cryst. 41 11 (in Chinese) [杨辉, 朱世富, 赵北君, 陈宝军, 何知宇, 樊龙, 刘光耀, 王小元 2012 人工晶体学报 41 11]
[53]
Wang C 2017 M. S. Thesis (Jinan: Shandong University) (in Chinese) [王慈 2017 硕士学位论文 (济南: 山东大学)]
[54]
Kumar S C, Zawilski K T, Schunemann P G, Ebrahim-Zadeh M 2017 Opt. Lett. 42 3606
[55]
Zawilski K T, Schunemann P G, Pollak T C, Zelmon D E, Fernelius N C, Kenneth Hopkins F 2010 J. Cryst. Growth 312 1127
[56]
Zhang G, Ruan H, Zhang X, Wang S, Tao X 2013 Cryst. Eng. Comm. 15 4255
[57]
Fan L, Zhu S, Zhao B, Chen B, He Z, Yang H, Liu G, Wang X 2013 J. Cryst. Growth 364 62
[58]
He Z, Zhao B, Zhu S, Chen B, Huang W, Lin L, Feng B 2018 J. Cryst. Growth 481 29
[59]
Peremans A, Lis D, Cecchet F, Schunemann P G, Zawilski K T, Petrov V 2009 Opt. Lett. 34 3053
[60]
Kumar S C, Agnesi A, Dallocchio P, Pirzio F, Reali G, Zawilski K T, Schunemann P G, Ebrahim-Zadeh M 2011 Opt. Lett. 36 3236
[61]
Kumar S C, Jelínek M, Baudisch M, Zawilski K T, Schunemann P G, Kubeček V, Biegert J, Ebrahim-Zadeh M 2012 Opt. Express 20 15703
[62]
O'Donnell C F, Kumar S C, Zawilski K T, Schunemann P G, Ebrahim-Zadeh M 2018 Opt. Lett. 43 1507
[63]
Bai L, Lin Z S, Wang Z Z, Chen C T 2008 J. Appl. Phys. 103 083111
[64]
Wang S P, Tao X T, Dong C M, Jiao Z B, Jiang M H 2007 J. Synth. Cryst. 36 8 (in Chinese) [王善朋, 陶绪堂, 董春明, 焦正波, 蒋民华 2007 人工晶体学报 36 8]
[65]
Isaenko L, Vasilyeva I, Yelisseyev A, Lobanov S, Malakhov V, Dovlitova L, Zondy J J, Kavun I 2000 J. Cryst. Growth 218 313
[66]
Wang S P, Tao X T, Dong C M, Liu J, Jiang M H 2006 J. Synth. Cryst. 35 1167 (in Chinese) [王善朋, 陶绪堂, 董春明, 刘杰, 蒋民华 2006 人工晶体学报 35 1167]
[67]
Wang S P, Tao X T, Liu G D, Dong C M, Jiang M H 2009 J. Synth. Cryst. 38 851 (in Chinese) [王善朋, 陶绪堂, 刘贯东, 董春明, 蒋民华 2009 人工晶体学报 38 851]
[68]
Wang S, Gao Z, Zhang X, Zhang X, Li C, Dong C, Lu Q, Zhao M, Tao X 2014 Cryst. Growth Des. 14 5957
[69]
Beutler M, Rimke I, Büttner E, Petrov V, Isaenko L 2014 Opt. Lett. 39 4353
[70]
Isaenko L, Yelisseyev A, Lobanov S, Petrov V, Rotermund F, Slekys G, Zondy J J 2002 J. Appl. Phys. 91 9475
[71]
Tupitsyn E, Bhattacharya P, Rowe E, Matei L, Cui Y, Buliga V, Groza M, Wiggins B, Burger A, Stowe A 2014 J. Cryst. Growth 393 23
[72]
Wang S, Zhang X, Zhang X, Li C, Gao Z, Lu Q, Tao X 2014 J. Cryst. Growth 401 150
[73]
Jia N, Wang S, Gao Z, Wu Q, Li C, Zhang X, Yu T, Lu Q, Tao X 2017 Cryst. Growth Des. 17 5875
[74]
Ma T, Zhu C, Lei Z, Yang C, Sun L, Zhang H 2015 J. Cryst. Growth 415 132
[75]
Marchev G, Tyazhev A, Vedenyapin V, Kolker D, Yelisseyev A, Lobanov S, Isaenko L, Zondy J J, Petrov V 2009 Opt. Express 17 13441
[76]
Wang S, Dai S, Jia N, Zong N, Li C, Shen Y, Yu T, Qiao J, Gao Z, Peng Q, Xu Z, Tao X 2017 Opt. Lett. 42 2098
[77]
Dai S, Jia N, Chen J, Shen Y, Yang S, Li Y, Liu Q, Yang F, Zong N, Wang Z, Zhang F, Cui D, Peng Q, Wang S, Tao X, Xu Z 2017 Opt. Express 25 12860
[78]
Lin X, Zhang G, Ye N 2009 Cryst. Growth Des. 9 1186
[79]
Yao J, Mei D, Bai L, Lin Z, Yin W, Fu P, Wu Y 2010 Inorg. Chem. 49 9212
[80]
Badikov V, Badikov D, Shevyrdyaeva G, Tyazhev A, Marchev G, Panyutin V, Petrov V, Kwasniewski A 2011 Phys. Status Solidi RRL 5 31
[81]
Tyazhev A, Kolker D, Marchev G, Badikov V, Badikov D, Shevyrdyaeva G, Panyutin V, Petrov V 2012 Opt. Lett. 37 4146
[82]
Kato K, Okamoto T, Mikami T, Petrov V, Badikov V, Badikov D, Panyutin V 2013 Proc. SPIE 8604 860416
[83]
Yang F, Yao J Y, Xu H Y, Feng K, Yin W L, Li F Q, Yang J, Du S F, Peng Q J, Zhang J Y, Cui D F, Wu Y C, Chen C T, Xu Z Y 2013 Opt. Lett. 38 3903
[84]
Yang F, Yao J Y, Xu H Y, Zhang F F, Zhai N X, Lin Z H, Zong N, Peng Q J, Zhang J Y, Cui D F, Wu Y C, Chen C T, Xu Z Y 2015 IEEE Photon. Technol. Lett. 27 1100
[85]
Yuan J H, Li C, Yao B Q, Yao J Y, Duan X M, Li Y Y, Shen Y J, Wu Y C, Cui Z, Dai T Y 2016 Opt. Express 24 6083
[86]
Xu W T, Wang Y Y, Xu D G, Li C, Yao J Y, Yan C, He Y X, Nie M T, Wu Y C, Yao J Q 2017 Appl. Phys. B 123 80
[87]
Kolker D B, Kostyukova N Y, Boyko A A, Badikov V V, Badikov D V, Shadrintseva A G, Tretyakova N N, Zenov K G, Karapuzikov A A, Zondy J J 2018 J. Phys. Commun. 2 035039
[88]
Wu H X, Huang F, Ni Y B, Wang Z Y, Chen L, Cheng G C 2010 Chin. J. Quant. Elect. 27 711 (in Chinese) [吴海信, 黄飞, 倪友保, 王振友, 陈林, 程干超 2010 量子电子学报 27 711]
[89]
Zeng T X, Zhao B J, Zhu S F, He Z Y, Chen B J, Lu D Z 2009 J. Synth. Cryst. 38 1068 (in Chinese) [曾体贤, 赵北君, 朱世富, 何知宇, 陈宝军, 卢大洲 2009 人工晶体学报 38 1068]
[90]
Zhang Y W, Li H, Cheng H J 2016 Piezoelectrics and Acoustooptics 38 427 (in Chinese)[张颖武, 李晖, 程红娟 2016 压电与声光 38 427]
[91]
Kolesnikov N N, James R B, Berzigiarova N S, Kulakov M P 2003 Proc. SPIE 4784 93
[92]
Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) p522 (in Chinese) [介万奇2010 晶体生长原理与技术 (北京: 科学出版社) 第522页]
[93]
Kong H Z, Shi W D, Wang D C 1986 Journal of Semiconductors 7 73 (in Chinese) [孔宏志, 石伟东, 王德昌 1986 半导体学报 7 73]
[94]
Zeng T, Zhao B, Zhu S, He Z, Chen B, Tan Z 2011 J. Cryst. Growth 316 15
[95]
Ni Y, Wu H, Mao M, Li W, Wang Z, Ma J, Chen S, Huang C 2018 Opt. Mater. Express 8 1796
[96]
Yao B Q, Li G, Zhu G L, Meng P B, Jü Y L, Wang Y Z 2012 Chin. Phys. B 3 034213
[97]
Allik T H, Chandra S, Rines D M, Schunemann P G, Hutchinson J A, Utano R 1997 Opt. Lett. 22 597
[98]
Yuan J H, Duan X M, Yao B Q, Cui Z, Li Y Y, Dai T Y, Shen Y J, Ju Y L 2016 Appl. Phys. B 122 202
[99]
Yang C H, Ma T H, Zhu C Q, Lei Z T 2017 J. Chem. Ceram. Soc. 45 1402 (in Chinese) [杨春晖, 马天慧, 朱崇强, 雷作涛 2017 硅酸盐学报 45 1402]
[100]
Anis M K 1981 J. Cryst. Growth 55 465
[101]
Petrov V, Panyutin V L, Tyazhev A, Marchev G, Zagumennyi A I, Rotermund F, Noack F, Miyata K, Iskhakova L D, Zerrouk A F 2011 Laser Phys. 21 774
[102]
Tikhomirov A A, Lanskii G V 2006 Proc. SPIE 6258 64
[103]
Suhre D R, Singh N B, Balakrishna V, Fernelius N C, Hopkins F K 1997 Opt. Lett. 22 775
[104]
Das S, Ghosh C, Voevodina O G, Andreev Y M, Sarkisov S Y 2006 Appl. Phys. B 82 43
[105]
Hsu Y K, Chang C S, Hsieh W F 2003 Jpn. J. Appl. Phys. 42 4222
[106]
Zhu C, Lei Z, Song L, Ma T, Yang C 2015 J. Cryst. Growth 421 53
[107]
Zhong K, Yao J Q, Li J S, Xu D, Wang P 2010 Proc. SPIE 7846 78460
[108]
Petrov V, Badikov V, Shevyrdyaeva G, Panyutin V, Chizhikov V 2004 Opt. Mater. 26 217
[109]
Petrov V, Noack F, Badikov V, Shevyrdyaeva G, Panyutin V, Chizhikov V 2004 Appl. Opt. 43 4590
[110]
Shevchuk M V, Atuchin V V, Kityk A V, Fedorchuk A O, Romanyuk Y E, CaŁus S, Yurchenko O M, Parasyuk O V 2011 J. Cryst. Growth 318 708
[111]
Santos-Ortiz R, Tupitsyn E, Nieves I, Bhattacharya P, Burger A 2011 J. Cryst. Growth 314 293
[112]
Schunemann P G, Pomeranz L A, Setzler S D, Jones C W, Budni P A 2013 Conference on Lasers and Electro-Optics: Europe & International Quantum Electronics Conference Munich, Germany, May 12--16, 2013 p1
[113]
Tassev V, Bliss D, Lynch C, Yapp C, Goodhue W, Termkoa K 2010 J. Cryst. Growth 312 1146
[114]
Schunemann P G, Pomeranz L A, Magarrell D J 2015 Conference on Lasers and Electro-Optics: Science and Innovations San Jose, United States, May 10--15 2015 p4
[115]
Pomeranz L A, Schunemann P G, Magarrell D J, McCarthy J C, Zawilski K T, Zelmon D E 2015 Proc. SPIE 9347 9347K
[116]
Maidment L, Schunemann P G, Reid D T 2016 Conference on Lasers and Electro-Optics San Jose, United States, June 5--10, 2016 pSTu1Q.5
数据正在加载中...
中国物理学会期刊网