中国物理学会期刊网
物理学报  2018, Vol.67 Issue (24): 247302  DOI:10.7498/aps.67.20182085
银纳米线表面等离激元波导的能量损耗
西安交通大学理学院, 西安 710049
Energy loss of surface plasmon polaritons on Ag nanowire waveguide
School of Science, Xi'an Jiaotong University, Xi'an 710049, China

摘要

金属纳米结构的表面等离激元可以突破光学衍射极限,为光子器件的微型化和集成光学芯片的实现奠定基础.基于表面等离激元的各种基本光学元件已经研制出来.然而,由于金属结构的固有欧姆损耗以及向衬底的辐射损耗等,表面等离激元的传输能量损耗较大,极大地制约了其在纳米光子器件和回路中的应用.研究能量损耗的影响因素以及如何有效降低能量损耗对未来光子器件的实际应用具有重要意义.本文从纳米线表面等离激元的基本模式出发,介绍了它在不同条件下的场分布和传输特性,在此基础上着重讨论纳米线表面等离激元传输损耗的影响因素和测量方法以及目前常用的降低传输损耗的思路.最后给出总结以及如何进一步降低能量损耗方法的展望.表面等离激元能量损耗的相关研究对于纳米光子器件的设计和集成光子回路的构建有着重要作用.

Abstract

Metal nanostructures can support surface plasmon polaritons (SPPs) propagating beyond diffraction limit, which enables the miniaturizing of optical devices and the integrating of on-chip photonic and electronic circuits. Various surface plasmon based optical components have already been developed such as plasmonic routers, detectors, logic gates, etc. However, the high energy losses associated with SPPs' propagation have largely hampered their applications in nanophotonic devices and circuits. Developing the methods of effectively reducing energy loss is significant in this field. In this review, we mainly focus on the energy losses when SPPs propagate in Ag nanowires (NWs). Researches on energy loss mechanism, measurement approaches and methods of reducing energy loss have been reviewed. Owing to their good morphology and high crystallinity as well as low loss in visible spectrum, chemically synthesized Ag NWs are a promising candidate for plasmonic waveguides. The energy losses mainly arise from inherent Ohmic damping, scattering process, leaky radiation and absorption of substrate. These processes can be influenced by excitation wavelength, the geometry of NW and the dielectric environment, especially the effect of substrate, which is discussed in the review. Longer excitation wavelength and larger NW diameter can induce decreased mode confinements and smaller Ohmic loss. The experimental methods to measure the energy loss have been summarized. Researches on reducing energy loss have been reviewed including applying dielectric layer or graphene between NW and substrate, replacing commonly used substrate with a dielectric multilayer substrate, introducing gain materials, and forming hybrid waveguides by using the semiconductor or dielectric NW. Specifically, the leaky radiation can be prevented when an appropriate dielectric layer is placed between NW and substrate, and the mode confinement can be reduced which leads to decreased Ohmic loss. The gain materials can be used to compensate for the energy loss during propagation. Compared with metal waveguides, semiconductor or dielectric NWs suffer lower energy losses while decreased field confinement. Then the hybrid waveguides constructed by metal and dielectric NWs can combine their advantages, which possesses reduced propagation loss. In addition, the plasmon modes in NWs in a homogeneous medium and a substrate are briefly discussed respectively, followed by the introduction to fundamental properties of SPPs propagation. Finally, perspectives of the future development of reducing energy loss are given. The researches on reducing energy loss are crucial for designing and fabricating the nanophotonic devices and integrated optical circuits.
收稿日期:2018-11-23

基金资助

国家自然科学基金(批准号:11674259,11204234)和中央高校基本科研业务费(批准号:xjj2016057)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11674259, 11204234) and the Fundamental Research Fund for the Central Universities, China (Grant No. xjj2016057).

引用本文

[中文]
王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗[J]. 物理学报, 2018, 67(24): 247302.
[英文]
Wang Wen-Hui, Zhang Nao. Energy loss of surface plasmon polaritons on Ag nanowire waveguide[J]. Acta Phys. Sin., 2018, 67(24): 247302.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[2]
Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402
[3]
Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20
[4]
Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83
[5]
Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L 2005 MRS Bull. 30 385
[6]
Economou E N 1969 Phys. Rev. 182 539
[7]
Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186
[8]
Maier S A, Friedman M D, Barclay P E, Painter O 2005 Appl. Phys. Lett. 86 071103
[9]
Qu D X, Grischkowsky D 2004 Phys. Rev. Lett. 93 196804
[10]
Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51
[11]
Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069
[12]
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508
[13]
Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263
[14]
Krenn J R, Weeber J C 2004 Philos. Trans. R. Soc. London Ser. A 362 739
[15]
Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A 2006 Nano Lett. 6 1822
[16]
Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472
[17]
Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383
[18]
Li Z, Bao K, Fang Y, Huang Y, Nordlander P, Xu H 2010 Nano Lett. 10 1831
[19]
Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801
[20]
Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J, Xu H 2011 Nano Lett. 11 471
[21]
Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560
[22]
Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950
[23]
Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387
[24]
Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning C Z, Tong L 2013 Nano Lett. 13 5654
[25]
Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N d L, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475
[26]
Goodfellow K M, Chakraborty C, Beams R, Novotny L, Vamiyakas A N 2015 Nano Lett. 15 5477
[27]
Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882
[28]
Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801
[29]
Wang Y, Ma Y, Guo X, Tong L 2012 Opt. Express 20 19006
[30]
Zhang S H, Jiang Z Y, Xie Z X, Xu X, Huang R B, Zheng L S 2005 J. Phys. Chem. B 109 9416
[31]
Staleva H, Skrabalak S E, Carey C R, Kosel T, Xia Y, Hartland G V 2009 Phys. Chem. Chem. Phys. 11 5889
[32]
Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J 11 454
[33]
Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60
[34]
Sun Y G, Xia Y N 2002 Adv. Mater. 14 833
[35]
Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420
[36]
Pan D, Wei H, Jia Z, Xu H 2014 Sci. Rep. 4 4993
[37]
Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803
[38]
Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102
[39]
Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402
[40]
Zhang S, Xu H 2012 ACS Nano 6 8128
[41]
Wei H, Pan D, Xu H 2015 Nanoscale 7 19053
[42]
Xu D H, Hu Q, Peng R W, Zhou Y, Wang M 2015 Acta Phys. Sin. 64 097803 (in Chinese) [徐地虎, 胡青, 彭茹雯, 周昱, 王牧 2015 物理学报 64 097803]
[43]
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496
[44]
Oulton R F, Bartal G, Pile D F P, Zhang X 2008 New J. Phys. 10 105018
[45]
Song Y, Yan M, Yang Q, Tong L M, Qiu M 2011 Opt. Commun. 284 480
[46]
Jia Z, Wei H, Pan D, Xu H 2016 Nanoscale 8 20118
[47]
Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q 2010 Opt. Lett. 35 1160
[48]
Hua J, Wu F, Fan F, Wang W, Xu Z, Li F 2016 J. Phys.: Condens. Matter 28 254005
[49]
Kusar P, Gruber C, Hohenau A, Krenn J R 2012 Nano Lett. 12 661
[50]
Wu F, Wang W, Hua J, Xu Z, Li F 2016 Sci. Rep. 6 37512
[51]
Hua J, Wu F, Xu Z, Wang W 2016 Sci. Rep. 6 34418
[52]
Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560
[53]
Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H 2013 Sci. Rep. 3 1967
[54]
Wang W, Yang Q, Fan F, Xu H, Wang Z L 2011 Nano Lett. 11 1603
[55]
Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403
[56]
Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494
[57]
Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys. Lett. 60 663
[58]
Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B 2009 Nano Lett. 9 2553
[59]
Dorfmueller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372
[60]
Li X, Guo X, Wang D, Tong L 2014 Opt. Commun. 323 119
[61]
Wang W, Zhou W, Fu T, Wu F, Zhang N, Li Q, Xu Z, Liu W 2018 Nano Energy 48 197
[62]
Meng X, Zhu W, Li H, Zhai C, Zhang W 2018 Opt. Commun. 423 152
[63]
Zhang D, Xiang Y, Chen J, Cheng J, Zhu L, Wang R, Zou G, Wang P, Ming H, Rosenfeld M, Badugu R, Lakowicz J R 2018 Nano Lett. 18 1152
[64]
Paul A, Zhen Y R, Wang Y, Chang W S, Xia Y, Nordlander P, Link S 2014 Nano Lett. 14 3628
[65]
Li Y J, Xiong X, Zou C L, Ren X F, Zhao Y S 2015 Small 11 3728
[66]
Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515
[67]
Li Y J, Yan Y, Zhang C, Zhao Y S, Yao J 2013 Adv. Mater. 25 2784
[68]
Yan Y, Zhang C, Zheng J Y, Yao J, Zhao Y S 2012 Adv. Mater. 24 5681
数据正在加载中...
中国物理学会期刊网