中国物理学会期刊网
物理学报  2018, Vol.67 Issue (7): 070201  DOI:10.7498/aps.67.20171774
基于场变换的毫米波半波片设计
南京大学电子科学与工程学院, 南京 210093
Millimeter-wave half-waveplate based on field transformation
Department of Electronic Engineering, School of Electronic Science and Engineering Nanjing University, Nanjing 210093, China

摘要

极化转换是电磁波调控的重要研究方向之一.本文基于场变换理论提出一种宽入射角的宽带毫米波半波片.基于等效媒质理论,该半波片可由亚波长厚度的两种介电常数不同的材料周期性排布后旋转45°得到.通过设计控制两种材料的介电常数、高度比值以及整个半波片的厚度可以在毫米波段实现极化转换的功能,此设计具有低损耗和高转化效率的特点.此半波片能实现横电波与横磁波的相互转换以及圆极化波的相互转换,极化转换-3 dB相对带宽达49%.仿真和实测结果相符,验证了该半波片宽带高效的极化转换效果.在入射角为60°时,极化转换-3 dB带宽依然能够达到36%左右.

Abstract

Over the last decades, manipulating polarization has received much attention due to its wide applications in science and technology. In this paper, a half-waveplate based on a field transformation (FT) method is proposed and investigated in order to convert polarization, which works at millimeter-wave band with a wide incident angle and broad working bandwidth.
Inspired by the FT method, we confine our attention to a two-dimensional (2D) case of in-plane wave propagation on the x-y plane, with both material properties and fields unchanged in the z direction. The fields are denoted with a subscript “(0)” in the virtual space. Then a series of theoretical calculations is analyzed in detail. Under the guidance of theoretical analysis, it is shown that the main job for realizing this half-wavepalate is to obtain a material with specific permittivity and permeability. The proposed waveplate is composed of periodically arranged two dielectric layers each with sub-wavelength in height. By using the effective medium theory, the effective electromagnetic (EM) parameters of the waveplate can be tuned by manipulating the heights of the two dielectric layers. Among them one layer is a material with a permittivity of 10 and height of 0.68 mm, and another layer material has a permittivity of 1, and height of 5 mm. We alternately arrange the two materials along one direction periodically to obtain a waveplate for realizing the TE-to-TM and LCP-to-RCP conversion. The thickness of whole waveplate is 5.5 mm. A broadband EM half-waveplate is achieved in millimeter-wave region, which possesses a nearly 90% conversion efficiency across the frequency band from 24 GHz to 37 GHz. At the same time, we also find that when the incident angle gradually increases from 0° to 60°, the performances of polarization conversion efficiency and working bandwidth are still good. For the incident angle of 60°, a 3-dB bandwidth over 26-33 GHz is still achieved. The performance of the waveplate is verified through both full-wave simulation and experimental measurement, which are in good agreement with each other. Meanwhile, three-dimensional (3D) printing technology makes the sample fabricated more easily. Another advantage of our design is that the 3D printing technology can be used to carry out the experimental fabrication, which may pave a new way to manufacturing more microwave devices.
收稿日期:2017-08-02

基金资助

国家自然科学基金(批准号:61671231,61571218,61571216,61301017,61371034)资助的课题.
Project supported by the the National Natural Science Foundation of China (Grant Nos. 61671231, 61571218, 61571216, 61301017, 61371034).

引用本文

[中文]
王成, 赵俊明, 姜田, 冯一军. 基于场变换的毫米波半波片设计[J]. 物理学报, 2018, 67(7): 070201.
[英文]
Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Millimeter-wave half-waveplate based on field transformation[J]. Acta Phys. Sin., 2018, 67(7): 070201.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483
[2]
Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607
[3]
Gansel J K 2009 Science 325 1513
[4]
Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870
[5]
Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152
[6]
Wu L 2014 Appl. Phys. A 116 014
[7]
Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849
[8]
Hao J 2006 Phys. Rev. Lett. 99 063908
[9]
Ye Y, He S 2010 Appl. Phys. Lett. 96 203501
[10]
Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870
[11]
Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804
[12]
Doumanis E 2012 IEEE Trans. Antennas Propag 60 212
[13]
Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615
[14]
Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116
[15]
Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902
[16]
Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[17]
Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825
[18]
Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901
[19]
Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
[20]
Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
[21]
Ma H F, Cui T J 2010 Nat. Commun 1 21
[22]
Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
[23]
Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127
[24]
Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903
[25]
Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
[26]
Kwon D H, Werner D H 2008 Opt. Express 16 18731
[27]
Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902
[28]
Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906
[29]
Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901
[30]
Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532
数据正在加载中...
中国物理学会期刊网