中国物理学会期刊网
物理学报  2019, Vol.68 Issue (12): 124201  DOI:10.7498/aps.68.20182304
1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究
1. 中国空间技术研究院西安分院, 西安 710100;2. 量子光学与光量子器件国家重点实验室, 山西大学光电研究所, 太原 030006;3. 山西大学, 极端光学协同创新中心, 太原 030006>
Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source
1. China Academy of Space Technology (Xi'an), Xi'an 710100, China;2. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;3. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China>

摘要

实验和理论研究了单频固体激光器和单频光纤激光器的相对强度噪声对压缩真空态光场测量精度的影响.在实验中分别采用单频固体激光器和单频光纤激光器作为实验系统的光源,直接探测到的压缩真空态光场的压缩度分别为(13.2 ±0.2) dB和(10 ±0.2) dB.通过理论计算得知本实验中影响可测压缩度的主要因素是光源的相对强度噪声,为实用化的高压缩度压缩真空态光场发生器的研制提供了理论和实验指导.

Abstract

Squeezed states, which have fewer fluctuations in one quadrature than vacuum noise at the expense of increasing fluctuations in the other quadrature, can be used to enhance measurement accuracy, increase detection sensitivity, and improve fault tolerance performance for quantum information and quantum computation. In this paper, the influences of relative intensity noise (RIN) of all-solid-state single-frequency laser and single-frequency fiber laser on the squeezing factor of squeezed vacuum states are experimentally and theoretically studied. Here, an all-solid-state single-frequency laser and a single-frequency fiber laser each are used as a light source of the system generating squeezed vacuum states. The homodyne detection is used to compare the RIN of all-solid-state single-frequency laser and that of single-frequency fiber laser at the analysis frequency of 1 MHz. The results show that the RIN of the all-solid-state single-frequency laser and single-frequency fiber laser are higher than those of the shot noise limitation 2.3 dB and 30 dB at the analysis frequency of 1 MHz, respectively. The RIN of all-solid-state single-frequency laser is far less than that of the single-frequency fiber laser. As a result, squeezed vacuum state with maximum quantum noise reduction of (13.2 ±0.2) dB and (10 ±0.2) dB are directly detected. Theoretical calculation shows that the influence of the RIN on the measurement accuracy is the major factor of degrading the squeezing factor with the fiber laser as the pump source. The measurement error of squeezed vacuum state caused by the RIN of single-frequency fiber laser is about 2.6 dB. The discrepancy of the pump power between the two lasers is another factor of affecting the squeezing factor, corresponding to 0.6 dB quantum noise difference. The theoretical calculations are consistent with the experimental results, which provides some guidance for developing the practical squeezed states with highly squeezing level.
收稿日期:2018-12-29

基金资助

国家自然科学基金(批准号:11654002,61575114,61501368,11505135)、山西省三晋学者特聘教授项目、山西省“1331”重点建设学科和山西省高等学校中青年拔尖创新人才资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 61575114, 61501368, 11505135), the Program for Sanjin Scholar of Shanxi Province, China, the Fund for Shanxi "1331 Project" Key Subjects Construction, China, and the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.

引用本文

[中文]
杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究[J]. 物理学报, 2019, 68(12): 124201.
[英文]
Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di. Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source[J]. Acta Phys. Sin., 2019, 68(12): 124201.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Yin J, Cao Y, Li Y H 2017 Science 356 1140
[2]
Huo M R, Qin J L, Sun Y R, Cheng J L, Yan Z H, Jia X J 2018 Acta Sin. Quantum Opt. 24 134[霍美如, 秦际良, 孙颍榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134]
[3]
Bai S, Wang J Y, Qiang J, Zhang L, Wang J J 2014 Opt. Express 22 26462
[4]
Zhang Y L, Lan T, Gao M G, Zhao T, Shen Z M 2015 Acta Phys. Sin. 64 164201[张逸伦, 蓝天, 高明光, 赵涛, 沈振民 2015 物理学报 64 164201]
[5]
Liu J J, Chang Q, Bao M M, Yuan B, Yang K, Ma Y Q 2018 Chin. Phys. B 26 098102
[6]
Jiang H F 2018 Acta Phys. Sin. 67 160602[姜海峰 2018 物理学报 67 160602]
[7]
Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601[彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601]
[8]
Lu H D, Su J, Zheng Y H, Peng K C 2014 Opt. Lett. 39 1117
[9]
Yang W H, Wang Y J, Li Z X, Zheng Y H 2014 Chin. J. Laser 41 0502002[杨文海, 王雅君, 李志秀, 郑耀辉 2014 中国激光 41 0502002]
[10]
Yan X W, Wang Z G, Jiang X Y, Zheng J G, Li M, Jing Y F 2018 Acta Phys. Sin. 67 184201[严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰 2018 物理学报 67 184201]
[11]
Xu S H, Yang Z M, Zhang W N, Wei X M, Qian Q, Chen D D, Zhang Q Y, Shen S X, Peng M Y, Qiu J R 2011 Opt. Lett. 36 3708
[12]
Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203[冯晋霞, 杜京师, 靳小丽, 李渊冀, 张宽收 2018 物理学报 67 174203]
[13]
Wang Y J, Yang W H, Zheng Y H, Peng K C 2015 Chin. Phys. B 24 070303
[14]
Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205[马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205]
[15]
Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114
[16]
Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H, Peng K C 2016 Opt. Lett. 41 3331
[17]
Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553
[18]
Gardiner C W, Collett M J 1985 Phys. Rev. A 30 3761
[19]
Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262
[20]
Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859
数据正在加载中...
中国物理学会期刊网