中国物理学会期刊网
物理学报  2019, Vol.68 Issue (2): 024201  DOI:10.7498/aps.68.20181816
高效产生任意矢量光场的一种方法
西北工业大学理学院, 陕西省光信息技术重点实验室, 西安 710072
A method of efficiently generating arbitrary vector beams
Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China

摘要

提出一种高效产生任意矢量光场的方法.利用两个光束偏移器分别对两个正交线偏振分量进行分束与合束,将传统激光模式转化为任意矢量光场.所产生矢量光场的偏振态和相位分布通过相位型空间光调制器(SLM)加载相应的相位实时调控.由于光路系统中不涉及任何衍射光学元件和振幅分光元件,光场转换效率高,仅取决于SLM的反射率,并且光路系统结构紧凑、稳定,同轴性易于调节.实验结果显示,采用反射率为79%的相位型SLM产生矢量光场的转换效率可达到58%.

Abstract

Vector beams have been used in scientific and engineering researches due to their unique focusing properties. In recent years, many methods of generating the vector beams have been proposed, among which the spatial light modulator (SLM) is widely used based on the superposition principle with using orthogonally polarized beams. However, the energy waste is generally associated with these superposition methods. How to efficiently generate vector beams is still a hot topic. Recently, we proposed an efficient method to generate tunable vector beams by using two triangular common-path interferometers (TCPIs) as the beam splitting and combining system. However, due to the complex structure of the TCPI, the system is difficult to adjust and unstable. In addition, the optical system brings about a long optical path, and the vector beams consisting of non-eigen modes will be distorted obviously with a long distance propagation.
In this paper, an improved method is proposed. We replace the TCPIs with a pair of beam displacers, which act as a beam splitter and combiner, respectively. In this setup, we can arbitrarily manipulate the polarization states and phase distributions of vector beams in real time by managing the phase diagrams load on the SLM. The whole optical system does not involve any diffractive optical elements, and has a higher conversion efficiency. The improved optical system is compact and stable, and makes the adjustment of coaxiality easier. The light energy utilization depends mainly on the reflectivity of SLM. The efficiency of generating vector beams is increased to 58% by using an SLM with a reflectivity value of 79%. Several typical vector beams with phases and tunable amplitude, including cylindrical vector beams, fractional vector beams, and vector beams with double singularities, double-mode, radially variant polarization distribution, and azimuthally and radially variant polarization distribution, are generated and verified well experimentally. This method is also expected to create high-power vector beams and play an important role in laser processing and light trapping.
收稿日期:2018-10-08

基金资助

国家自然科学基金(批准号:11634010,61675168,11774289)、国家重点研发计划(批准号:2017YFA0303800)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U1630125)、陕西省自然科学基础研究计划(批准号:2018JM1057)和西北工业大学研究生创意创新种子基金(批准号:ZZ2018177)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11634010, 61675168, 11774289), the National Key Research and Development Program of China (Grant No. 2017YFA0303800), the Joint Fund of the National Natural Science Foundation of China and China Academy of Engineering Physics (Grant No. U1630125), the Basic Research Plan of the Natural Science Research Project of Shaanxi Province, China (Grant No. 2018JM1057), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. ZZ2018177).

引用本文

[中文]
齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法[J]. 物理学报, 2019, 68(2): 024201.
[英文]
Qi Shu-Xia, Liu Sheng, Li Peng, Han Lei, Cheng Hua-Chao, Wu Dong-Jing, Zhao Jian-Lin. A method of efficiently generating arbitrary vector beams[J]. Acta Phys. Sin., 2019, 68(2): 024201.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Zhan Q W 2009 Adv. Opt. Photon. 1 1
[2]
Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1
[3]
Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901
[4]
Zhao Y Q, Zhan Q W, Zhang Y, Li Y P 2005 Opt. Lett. 30 848
[5]
Kozawa Y, Sato S 2006 Opt. Lett. 31 820
[6]
Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nat. Photonics 2 501
[7]
Li P, Guo X Y, Qi S X, Han L, Zhang Y, Liu S, Li Y, Zhao J L 2018 Sci. Rep. 8 9831
[8]
Liu S, Wang M R, Li P, Zhang P, Zhao J L 2013 Opt. Lett. 38 2416
[9]
Liu S, Li P, Zhang Y, Gan X, Wang M, Zhao J 2016 Sci. Rep. 6 20774
[10]
Zhou J, Zhang W, Liu Y, Ke Y, Liu Y, Luo H, Wen S 2016 Sci. Rep. 6 34276
[11]
Wei B Y, Chen P, Hu W, Ji W, Zheng L Y, Ge S J, Ming Y, Chigrinov V, Lu Y Q 2015 Sci. Rep. 5 17484
[12]
Cardano F, Marrucci L 2015 Nat. Photonics 9 776
[13]
Zhang Y, Li P, Liu S, Han L, Cheng H, Zhao J 2016 Opt. Express 24 28409
[14]
Li P, Liu S, Peng T, Xie G, Gan X, Zhao J 2014 Opt. Express 22 7598
[15]
Li P, Wu D, Zhang Y, Liu S, Li Y, Qi S, Zhao J 2018 Photon. Res. 6 756
[16]
Cheng H C, Li P, Liu S, Chen P, Han L, Zhang Y, Hu W, Zhao J L 2017 Appl. Phys. Lett. 111 141901
[17]
Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901
[18]
Nieminen T A, Heckenberg N R, Rubinsztein D H 2008 Opt. Lett. 33 122
[19]
Wang X L, Chen J, Li Y, Ding J, Guo C S, Wang H T 2010 Phys. Rev. Lett. 105 253602
[20]
Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887
[21]
Pohl D 1972 Appl. Phys. Lett. 20 266
[22]
Kozawa Y, Sato S 2005 Opt. Lett. 30 3063
[23]
Bisson J F, Li J, Ueda K, Senatsky Y 2006 Opt. Express 14 3304
[24]
Lai W J, Lim B C, Phua P B, Tiaw K S, Teo H H, Hong M H 2008 Opt. Express 16 15694
[25]
Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 285
[26]
Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisio C, Santamato E 2012 Appl. Opt. 51 C1
[27]
Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207
[28]
Li P, Zhang Y, Liu S, Ma C J, Han L, Cheng H C, Zhao J L 2016 Opt. Lett. 41 2205
[29]
Zhang Y, Li P, Ma C J, Liu S, Cheng H C, Zhao J L, Han L 2017 Appl. Opt. 56 4956
[30]
Christian M, Alexander J, Severin F, Stefan B, Monika R M 2007 New J. Phys. 9 78
[31]
Liu S, Li P, Peng T, Zhao J 2012 Opt. Express 20 21715
[32]
Wang X L, Ding J P, Ni W J, Guo C S, Wang H T 2007 Opt. Lett. 32 3549
[33]
Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L, Zhao J L 2018 Photon. Res. 6 228
[34]
Liu S, Han L, Li P, Zhang Y, Cheng H, Zhao J 2017 Appl. Phys. Lett. 110 171112
数据正在加载中...
中国物理学会期刊网