中国物理学会期刊网
物理学报  2019, Vol.68 Issue (2): 026402  DOI:10.7498/aps.68.20182008
碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响
苏州大学物理科学与技术学院, 软凝聚态物理及交叉研究中心, 江苏省薄膜材料重点实验室, 苏州 215006
Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl)
Jiangsu Key Laboratory of Thin Films,Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China

摘要

在纳米受限空间中,高分子往往会表现出与本体状态不同的性质,如异常的链段运动特性及晶相间转变行为等,这些性质对于研究和开发新型高分子材料具有重要的意义,因此针对受限环境下高分子的物理化学特性研究也一直是高分子界关注的焦点.本文通过化学气相沉积法制备垂直取向排列的多壁碳纳米管阵列,借助溶剂润湿-收缩法获得规整的高密度阵列结构,其取向排列的碳纳米管间隙形成了准一维的纳米受限空间,尺寸在5—50 nm尺度下可调.进一步将共轭高分子聚(9,9-二辛基芴-2,7-二基)(PFO)填充到碳管间隙的纳米空间中,制备PFO与取向多壁碳纳米管阵列复合膜.结果发现在碳纳米管形成的纳米受限空间中,PFO的链段热运动行为与本征态PFO薄膜相比受到了明显的抑制,不同晶型间转变速度大大减缓,提高了β构象的热稳定性,同时取向排列的碳纳米管对PFO分子链取向排列分布具有明显的诱导作用,有利于获得高性能的PFO晶体.这种高密度取向排列的碳纳米管阵列结构未来可以用于制备优良发光性能及高稳定性的PFO光电器件.

Abstract

The conjugated polymer polyflourene has been well studied for its strong blue light emission ability and high quantum efficiency behavior. It has wide applications for light emitting diodes, sensors as well as photo-detectors. Therein the β conformation of PFO crystals is more attractive due to its longer conjugation length, higher carrier mobility and better luminous efficiency. Therefore it is great essential to control the formation and stability of β conformation of PFO crystals to develop new kind of photo-electronic devices. As is known, polymeric materials confined in a nanometer-sized space often exhibit unique properties compared with their bulk state, such as abnormal chain mobility, molecular assembly and phase transition behavior. These factors are of great significance to develop new kind of material and applications. Generally the confined condition includes quantum dot (zero-dimensional, 0D), nanowire or nanotube (1D), ultrathin film (2D) and nanoparticle (3D). In this paper, we design a unique 1D nanoconfined environment based on vertically aligned carbon nanotube (CNT) array structure. An ultra-high CNT density is achieved through a solvent-induced contraction process. The adjacent narrow carbon nanotube gap thus forms a quasi-1 confined nano-space with the tunable size ranging from 5 to 50 nm. Then we infiltrate the conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) (PFO) into those nano-gaps of carbon nanotube arrays through a solvent evaporation method to obtain the PFO infilled CNT array composite film. It is found that the chain mobility of PFO molecules in such a 1D nano-confined space of carbon nanotubes is significantly suppressed compared with the scenario of the spin-coated PFO film. The transition speed between different crystal forms of PFO declines greatly, which meanwhile improves the thermal stability of the β conformation of PFO crystal. Additionally, the aligned carbon nanotubes have great effects on the orientation and distribution of PFO chains. The PFO crystals are confirmed to grow preferentially along the longitudinal direction of CNT array, which is potential to grow PFO crystals with high quality and excellent performance. Thus, such a PFO/CNT array composite film can have great potential to prepare PFO photovoltaic devices with excellent luminescent properties and high stability in the future.
收稿日期:2018-11-12

基金资助

国家自然科学基金(批准号:21204059)、江苏省特聘教授计划(批准号:SR10800215,SR10800312)和江苏省自然科学基金(批准号:BK20181430)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant No. 21204059), the Specially-Appointed Professor Plan in Jiangsu Province, China (Grant Nos. SR10800215, SR10800312), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181430).

引用本文

[中文]
李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖. 碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响[J]. 物理学报, 2019, 68(2): 026402.
[英文]
Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui. Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl)[J]. Acta Phys. Sin., 2019, 68(2): 026402.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587
[2]
Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545
[3]
Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314
[4]
Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326
[5]
Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800
[6]
Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696
[7]
Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731
[8]
Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391
[9]
Scherf U, List E J W 2002 Adv. Mater. 14 477
[10]
Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379
[11]
Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833
[12]
Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810
[13]
Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387
[14]
Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402
[15]
Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503
[16]
Cadby A J 2000 Phys. Rev. B 62 15604
[17]
Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574
[18]
Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882
[19]
Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247
[20]
Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315
[21]
Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993
[22]
Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299
[23]
Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71
[24]
O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180
[25]
Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171
[26]
Liu C L, Chen H L 2018 Soft Matter 14 5461
[27]
Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196
[28]
Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617
[29]
Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472
[30]
Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801
[31]
Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244
[32]
Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194
[33]
Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535
[34]
Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638
[35]
O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379
[36]
O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42
[37]
Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997
[38]
Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024
[39]
Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153
[40]
Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007
[41]
Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885
[42]
Ajayan P M, Lijima S 1993 Nature 361 333
[43]
Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101
[44]
Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647
[45]
Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321
[46]
Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820
[47]
Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987
[48]
Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763
[49]
Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443
[50]
Jen T H, Wang K K, Chen S A 2012 Polymer 53 5850
[51]
Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067
[52]
Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244
[53]
Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678
[54]
Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702
数据正在加载中...
中国物理学会期刊网