中国物理学会期刊网
物理学报  2019, Vol.68 Issue (3): 034201  DOI:10.7498/aps.68.20181723
基于赝热光照明的单发光学散斑成像
1. 中国科学院上海光学精密机械研究所, 强场激光物理国家重点实验室, 上海 201800;2. 中国科学院大学, 北京 100049>
Single-shot optical speckle imaging based on pseudothermal illumination
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;2. University of Chinese Academy of Sciences, Beijing 100049, China>

摘要

散射介质对光的散射是当前限制光学成像深度或距离的一个严重的问题.本文首先数值模拟比较了光透过随机散射介质成像研究中常用的基于光学记忆效应(memory effect,ME)和自相关(autocorrelation,AC)方法的HIO&ER算法和乒乓(Ping-Pang,PP)算法的优缺点.通过对HIO&ER算法和PP算法的恢复效果和迭代次数进行比较,发现PP算法在保持较高恢复效果的前提下拥有更快的运行速度.实验中,利用连续He-Ne激光器和旋转毛玻璃产生赝热光源,通过物镜对随机散射介质后数毫米距离内的不同形状物体进行了单帧成像,并采用PP算法成功地恢复出微米量级物体的实际图像.这一研究结果将进一步促进ME和AC方法在深层生物组织医学成像研究上的应用.最后,实验研究了不同的物镜和散射介质的间距对成像恢复的放大率、分辨率和图像强度的影响特性,并进行了详细研究.

Abstract

Scattering in medium is a serious problem that limits the imaging depth or imaging distance. According to the absorption and scattering of light in biological tissues, it is difficult for both excited light and signal light to penetrate biological tissues, and the scattering effect in biological tissues will destroy the phase information of signal light, so it is difficult to directly carry out high resolution imaging in deep biological tissues. In the recent studies it is surprisingly found that two-dimensional image information of an object can be directly recovered from the disordered speckle pattern with pseudothermal light sources based on the optical memory effect (ME) and autocorrelation (AC) method. In this paper, we study a speckle imaging method based on pseudothermal illumination, where the Gerchberg-Saxton algorithm is used to perform the phase recovery of the object. Here, the advantages and disadvantages of HIO&ER algorithm and ping-pang (PP) algorithm based on the ME and AC method for imaging through random scattering medium are compared by using numerical simulation. By comparing the recovery effects and the numbers of iterations between HIO&ER algorithm and PP algorithm, it is found that PP algorithm has a fast running speed when a higher recovery quality is maintained. In addition, a continuous He-Ne laser and rotating ground glass are used to produce a pseudothermal light source. And a single frame imaging of different shape objects, which are a few millimeters away from random scattering medium, is carried out by objective lens. Then PP algorithm is adopted to recover the actual image of micron object. Furthermore, we experimentally find that the magnification, resolution and image intensity, which are qualitatively studied, are seriously affected by the distance between the focal plane of the object lens and scattering medium. We find that with the increase of the distance, the obtained autocorrelation graph and retrieval graph have corresponding amplification and the object sampling point information collected on sCOMS increases, which improves its resolution. However, the scattered light intensity collected by objective lens decreases after passing through the scattering medium, making the intensity of recovered image weaken. The results of this study will further promote the application of ME and AC method in the study of deep tissue medical imaging.
收稿日期:2018-09-17

基金资助

国家自然科学基金(批准号:11274327,61521093,61527821)、中国科学院仪器开发项目(批准号:YZ201538)、国家自然科学基金青年科学基金(批准号:11804350)和上海市扬帆计划(批准号:17YF1421300)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11274327, 61521093, 61527821), the Instrument Developing Project of the Chinese Academy of Sciences, China (Grant No. YZ201538), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804350), and the Shanghai Sailing Program, China (Grant No. 17YF1421300).

引用本文

[中文]
肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像[J]. 物理学报, 2019, 68(3): 034201.
[英文]
Xiao Xiao, Du Shu-Man, Zhao Fu, Wang Jing, Liu Jun, Li Ru-Xin. Single-shot optical speckle imaging based on pseudothermal illumination[J]. Acta Phys. Sin., 2019, 68(3): 034201.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Ntziachristos V 2010 Nat. Meth. 7 603
[2]
Hoffman R M 2008 Methods Cell Biol. 85 485
[3]
Yang X, Pu Y, Psaltis D 2014 Opt. Express 22 3405
[4]
Kang S, Jeong S, Choi W, Ko H, Yang T D, Joo J H, Lee J S, Lim Y S, Park Q H, Choi W 2015 Nat. Photon. 9 253
[5]
Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2012 Nature 491 232
[6]
Wu T, Dong J, Shao X, Gigan S 2017 Opt. Express 25 27182
[7]
Sudarsanam S, Mathew J, Panigrahi S, Fade J, Alouini M, Ramachandran H 2016 Sci. Rep. 6 25033
[8]
Zhuang X W 2009 Nat. Photon. 3 436
[9]
Kolenderska S M, Katz O, Fink M, Gigan S 2015 Opt. Lett. 40 534
[10]
Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309
[11]
Katz O, Small E, Guan Y, Silberberg Y 2014 Optica 1 170
[12]
He G S 2002 Prog. Quantum Electron. 26 131
[13]
Lai P, Xu X, Liu H, Suzuki Y, Wang L V 2011 J. Biomed. Opt. 16 080505
[14]
Xu X, Liu H, Wang L V 2011 Nat. Photon. 5 154
[15]
Li X H, Deng C J, Chen M L, Gong W L, Han S S 2011 Opt. Lett. 36 394
[16]
Devaux F, Huy K P, Denis S, Lantz E, Moreau P A 2017 J. Opt. 19 024001
[17]
Moreau P A, Toninelli E, Gregory T, Padgett M J 2018 Laser Photon. Rev. 12 1863
[18]
Takasaki K T, Fleischer J W 2014 Opt. Express 22 31426
[19]
Schott S, Bertolotti J, Leger J F, Bourdieu L, Gigan S 2015 Opt. Express 23 13505
[20]
Edrei E, Scarcelli G 2016 Sci. Rep. 6 33558
[21]
Berto P, Rigneault H, Guillon M 2017 Opt. Lett. 42 5117
[22]
Osnabrugge G, Horstmeyer R, Papadopoulos I N, Judkewitz B, Vellekoop I M 2017 Optica 4 886
[23]
Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photon. 8 784
[24]
Judkewitz B, Horstmeyer R, Vellekoop I M, Papadopoulos I N, Yang C 2015 Nat. Phys. 11 684
[25]
Amir P, Ravn A E, Hervé R, Dan O, Sylvain G, Ori K 2016 Opt. Express 24 16835
[26]
Wang W, Hu X, Liu J, Zhang S, Suo J, Situ G 2015 Opt. Express 23 28416
[27]
Thrane L, Yura H T, Andersen P E 2000 J. Opt. Soc. Am. A 17 484
[28]
Antipov S P, Bogdashov A A, Chirkov A V, Denisov G G 2003 Int. J. Infrared Millimeter waves 24 1677
[29]
Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203[范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才 2018 物理学报 67 094203]
[30]
Fienup J R 1982 Appl. Opt. 21 2758
[31]
Michelle C, Haojiang Z E, Changhuei Y 2017 Opt. Express 25 3935
[32]
Shi Y, Liu Y, Wang J, Wu T 2017 Appl. Phys. Lett. 110 231101
[33]
Hofer M, Soeller C, Brasselet S, Bertolotti J 2018 Opt. Express 26 9866
数据正在加载中...
中国物理学会期刊网