中国物理学会期刊网
物理学报  2019, Vol.68 Issue (3): 037102  DOI:10.7498/aps.68.20181597
氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究
1. 中南林业科技大学理学院, 长沙 410004;2. 湖南大学物理与微电子科学学院, 长沙 410082>
Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study
1. College of Science, Central South University of Forestry and Technology, Changsha 410004, China;2. School of Physics and Electronics, Hunan University, Changsha 410082, China>

摘要

用氢对单层二维过渡金属硫化物(TMDs)进行功能化是调节单层TMDs电子性质的既有效又经济的方法.采用密度泛函理论,对单层TMDs (MX2M=Mo,W;X=S,Se,Te))的稳定性和电子性质进行理论研究,发现在单层MX2的层间有一个比其表面更稳定的氢吸附位点.当同阳离子时,随着阴离子原子序数的增加,H原子与MX2层的结合越强,氢化单层MX2结构越稳定;相反,同阴离子时,随着阳离子原子序数的增加,H原子与MX2层的结合越弱.氢原子从MoS2的表面经层间穿越到另一表面的扩散势垒约为0.9 eV.氢化对单层MX2的电子特性也会产生极大的影响,主要表现在氢化实现了MX2体系从无磁性到磁性体系的过渡.表面氢化会使MX2层的带隙急剧减小,而层间氢化使MX2的电子结构从半导体转变为金属能带.

Abstract

Chemical functionalization of two-dimensional transition metal dichalcogenides (TMDs) with hydrogen is an effective and economical method to synthesize monolayer TMDs and tune their electronic properties. We theoretically study the stabilities and electronic properties of chemisorbed H atoms on monolayer TMDs by using density-functional theory calculations. The result shows that there exists a more stable adsorption site in the layers of the monolayer MX2 (M=Mo, W; X=S, Se, Te) than its surface for hydrogen. In the case of the same cation, with the increase of the anion (X2-) atomic number, the stronger the bonding between the H atom and the MX2 layer, the more stable the structure of the hydrogenated monolayer MX2 is. However, in the case of the same anion, the binding between the H atom and the MX2 layer becomes weaker as the atomic number of the cations increases. H atoms passes through one surface of the MS2 to the other surface with a relatively small diffusion barrier of about 0.9 eV. So the H atoms can more easily go through the barrier. And for the H atom to go through the other monolayer MX2 (M=Mo, W; X=Se, Te), the diffusion barrier is about 1.2 eV. H atoms are difficult to pass through the barrier at this time. The singular diffusion behavior of H atoms in monolayer MX2 is conducible to understanding the stability of hydrogenated two-dimensional transition metal sulfide system. In addition, the surface hydrogenation and interlaminar hydrogenation have different effects on the electronic properties of monolayer MX2, and mainly manifest themselves in the fact that the surface hydrogenation induces spontaneous magnetism and sharply reduces the band gap, but still retains the semiconductor properties of the original monolayer MX2. However, interlaminar hydrogenation enables monolayer MX2 to directly realize the transition from semiconductor to metal. Interlaminar hydrogenation monolayer MX2 (M=Mo, W; X=S, Se) make the system generating magnetism, while when the anion is Te2-, the magnetism almost disappears. These results can provide theoretical guidance in understanding hydrogen functionalization of MX2 layer, and also present a certain theoretical basis for realizing the application of MX2 in nano-electronic devices.
收稿日期:2018-08-27

基金资助

国家自然科学基金(批准号:11674090,11347022,11447224)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11674090, 11347022, 11447224).

引用本文

[中文]
王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究[J]. 物理学报, 2019, 68(3): 037102.
[英文]
Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study[J]. Acta Phys. Sin., 2019, 68(3): 037102.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Tang L P, Tang L M, Wang D, Deng H X, Chen K Q 2018 J. Phys.: Condens. Matter 30 465301
[2]
Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417
[3]
Wang D, Tang L M, Jiang X X, Tan J Y, He M D, Wang X J, Chen K Q 2018 Adv. Electron. Mater. DOI: 10.1002/aelm.201800475
[4]
Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780
[5]
Schwierz F, Pezoldt J, Granzner R 2015 Nanoscale 7 8261
[6]
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722
[7]
Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820
[8]
Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Lee Y H, Chu C W, Wei K H, Kuo J L, Li L J 2011 ACS Nano 5 7517
[9]
Flores M Z, Autreto P A, Legoas S B, Galvao D S 2009 Nanotechnology 20 465704
[10]
Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401
[11]
Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
[12]
Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
[13]
Kang K, Xie S, Huang L, Han Y, Huang P Y, Mark K F, Kim C J, Muller D, Park J 2015 Nature 520 656
[14]
Tang L P, Tang L M, Geng H, Yi Y P, Wei Z, Chen K Q, Deng H X 2018 Appl. Phys. Lett. 112 012101
[15]
Xue X X, Feng Y X, Liao L, Chen Q J, Wang D, Tang L M, Chen K Q 2018 J. Phys.: Condens. Matter 30 125001
[16]
Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301[颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301]
[17]
Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303[李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]
[18]
Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664
[19]
Lopezsanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497
[20]
Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703
[21]
Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M 2011 Nano Lett. 11 5111
[22]
Ning F, Wang D, Feng Y X, Tang L M, Zhang Y, Chen K Q 2017 J. Mater. Chem. C 5 9429
[23]
Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887
[24]
Li Q, Tang L, Zhang C, Wang D, Chen Q J, Feng Y X, Tang L M, Chen K Q 2017 Appl. Phys. Lett. 111 171602
[25]
Xu Y, Li Y, Chen X, Zhang C, Zhang R, Lu P 2016 AIP Adv. 6 075001
[26]
Kam K K, Parkinson B A 1982 J. Phys. Chem. 86 463
[27]
Chen J, Li S L, Xu Q, Tanaka K 2002 Chem. Commun. 16 1722
[28]
Cheng F Y, Chen J, Gou X L 2006 Adv. Mater. 18 2561
[29]
Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R, Chang C J 2012 Science 335 698
[30]
Mouri S, Miyauchi Y, Matsuda K 2013 Nano Lett. 13 5944
[31]
Chhowalla M, Amaratunga G A 2000 Nature 407 164
[32]
Muratore C, Voevodin A A 2006 Surf. Coat. Technol. 201 4125
[33]
Stefanov M, Enyashin A N, Heine T, Seifert G 2008 J. Phys. Chem. C 112 17764
[34]
Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
[35]
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S 2009 Science 323 610
[36]
Zou J, Tang L M, Chen K Q, Feng Y X 2017 J. Phys.: Condens. Matter 30 065001
[37]
Zhang W, Zhang Z, Yang W 2015 J. Nanosci. Nanotechnol. 15 8075
[38]
van der Marel D, Molegraaf H J A, Zaanen J, Nussinov Z, Carbone F, Damascelli H, Eisaki H, Greven M, Kes P H, Li M 2003 Nature 425 271
[39]
Sundberg P, Moyes R B, Tomkinson J 1991 Bull. Soc. Chim. Belg. 100 967
[40]
Lozada-Hidalgo M, Zhang S, Hu S, Kravets V G, Rodriguez F J, Berdyugin A, Grigorenko A, Geim A K 2018 Nat. Nanotechnol. 13 300
[41]
Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42]
Blöchl P E 1994 Phys. Rev. B 50 17953
[43]
Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901
[44]
Koh E W K, Chiu C H, LimY K, ZhangY W, Pan H 2012 Int. J. Hydrogen Energy 37 14323
[45]
Ouml;zçelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125
数据正在加载中...
中国物理学会期刊网