中国物理学会期刊网
物理学报  2019, Vol.68 Issue (5): 053301  DOI:10.7498/aps.68.20182015
实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性
大连海事大学理学院, 大连 116026
Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design
College of Science, Dalian Maritime University, Dalian 116026, China

摘要

为了得到最长有效余辉时间的Sr2MgSi2O7:Eu2+,Dy3+荧光粉,应用二次通用旋转组合设计对实验进行全程优化,建立了稀土离子掺杂浓度Eu2+,Dy3+和有效余辉时间的二元二次回归方程模型,应用遗传算法计算得到有效余辉时间的理论最大值.采用高温固相法合成了最优掺杂浓度Sr2MgSi2O7:0.5 mol% Eu2+,1.0 mol% Dy3+的荧光粉,在370 nm激发下观察到了465 nm的特征发射,这归因于Eu2+的4f65d1—4f7跃迁.测量了最优荧光粉的热释发光特性,计算得到了陷阱深度为0.688 eV,讨论了长余辉发光的特性.

Abstract

An optimization method is used to obtain the longest effective afterglow time in the rare earth ions doped long lasting phosphors. The effective afterglow time is defined as the time for the intensity to decays to 10% of the initial intensity. In this paper, we choose the Eu2+ and Dy3+ coped Sr2MgSi2O7 as the experimental objects. In order to obtain the longest effective afterglow time of Sr2MgSi2O7:Eu2+, Dy3+ phosphor, the experiment is optimized by quadratic general rotation combination design. The Sr2MgSi2O7:Eu2+, Dy3+ phosphor are synthesized via a solid-state reaction. The effective afterglow time is obtained by the afterglow decay curve. A binary quadratic regression equation model relating the rare earth ions Eu2+/Dy3+ doping concentrations to the effective afterglow time is established. The genetic algorithm is used to solve the equation. The optimal doping concentration of Eu2+ and Dy3+ are 0.5 mol% and 1.0 mol%, respectively. The theoretical maximum value of effective afterglow time is calculated to be 321 s. The phosphor with the optimal doping concentration Sr2MgSi2O7:0.5 mol% Eu2+, 1.0 mol% Dy3+ are synthesized by the same method as that of synthesizing the frontal samples. The X-ray diffraction shows that the optimal sample prepared is of pure phase, and the doping ions have no effect on the lattice structure of the matrix. A characteristic emission at 465 nm due to the 4f65d1-4f7 transition of Eu2+is observed under the 370 nm excitation. The afterglow curve of the optimal sample is measured and the effective afterglow time is 333 s which has a good match with the theoretically calculated value of 321 s. The thermoluminescence spectrum of the optimal phosphor is measured, and the trap depth is calculated to be 0.688 eV according to the Chen's model. Moreover, the long-lasting luminescence process of Eu2+ as the luminescence center of Sr2MgSi2O7 matrix is discussed in the energy level diagram.
收稿日期:2018-11-12

基金资助

国家自然科学基金(批准号:61604029,11774042)、辽宁省自然科学基金(批准号:2014025010,20180510051)、中央高校基本科研业务费(批准号:DUT18LK48,3132018239)、大连高层次人才创新支持计划(批准号:2017RQ070)和大连海事大学教师发展专题(批准号:2017JFZ04)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 61604029, 11774042), the Natural Science Foundation of Liaoning Province, China (Grant Nos. 2014025010, 20180510051), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT18LK48, 3132018239), the High-level Personnel in Dalian Innovation Support Program, China (Grant No. 2017RQ070), and the Dalian Maritime University Teacher Development Topic, China (Grant No. 2017JFZ04).

引用本文

[中文]
刘盛意, 张金苏, 孙佳石, 陈宝玖, 李香萍, 徐赛, 程丽红. 实验优化设计Sr2MgSi2O7:Eu2+, Dy3+的合成及长余辉特性[J]. 物理学报, 2019, 68(5): 053301.
[英文]
Liu Sheng-Yi, Zhang Jin-Su, Sun Jia-Shi, Chen Bao-Jiu, Li Xiang-Ping, Xu Sai, Cheng Li-Hong. Synthesis and long afterglow characteristics of Sr2MgSi2O7:Eu2+, Dy3+ by experimental optimization design[J]. Acta Phys. Sin., 2019, 68(5): 053301.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Chang C K, Mao D L, Shen J F, Feng C L 2003 J. Alloy. Compd. 348 224
[2]
Johnson E J, Kafalas J, Dyes W A 1982 Appl. Phys. Lett. 40 993
[3]
Mei Q F, Tang Y H, Mei X N, Liu H C, Liu Q, Yu Y, Li N Y, Gao H 2016 Acta Phys. Sin. 65 170701[梅屹峰, 唐远河, 梅小宁, 刘汉臣, 刘骞, 余洋, 李宁远, 高恒 2016 物理学报 65 170701]
[4]
Peng L L, Cao S X, Zhao C, Liu B T, Han T, Li F, Li X M 2018 Acta Phys Sin. 67 187801[彭玲玲, 曹仕秀, 赵聪, 刘碧桃, 韩涛, 李凤, 黎小敏 2018 物理学报 67 187801]
[5]
Liu W Q, Zhao K F, Wu W J, Bao F Q, Zhou B Q 2018 Acta Phys. Sin. 65 207801[刘文全, 朝克夫, 武文杰, 包富泉, 周炳卿 2018 物理学报 65 207801]
[6]
Lindmayer J 1988 Solid State Technol. 31 135
[7]
Fan W H, Wang Y C, Xu H, Li D, Wei Z, Yang B Z, Niu L H 1999 J. Appl. Phys. 85 451
[8]
Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502
[9]
Yamashita S A, Ogawa N 1989 Phys. States Solidi B 118 89
[10]
Ou Y Y, Zhou W J, Liu C M, Lin L T, Brik G M, Dorenbos P 2018 J. Phys. Chem. C 122 2959
[11]
Yan J, Liu C M, Vlieland J, Zhou J B, Dorenbos P, Huang Y, Tao Y, Liang H B 2017 J. Lumin. 183 97
[12]
Liu F, Yan W, Chuang Y J, Zhen Z, Xie J, Pan Z 2013 Sci. Rep. 3 1554
[13]
Xu X, He Q, Yan L 2013 J. Alloy. Compd. 574 22
[14]
Wang J, Ma Q, Wang Y, Shen H, Yuan Q 2017 Nanoscale 9 6204
[15]
Sun J S, Li X P, Wu J L, Li S W, Shi L L, Xu S, Zhang J S, Cheng L H, Chen B J 2017 Acta Phys Sin. 66 100201[孙佳石, 李香萍, 李树伟, 吴金磊, 石琳琳, 徐赛, 张金苏, 程丽红, 陈宝玖 2017 物理学报 66 100201]
[16]
Tian B N 2013 M. S. Thesis (Dalian: Dalian Mar-itime University) (in Chinese)[田碧凝 2013 硕士学位论文 (大连: 大连海事大学)]
[17]
Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp172-185 (in Chinese)[任露泉 2009 试验优化设计与分析 (北京: 科学出版社) 第172—185页]
[18]
Wang Z J, Liu H Y, Yang Y, Jiang H F, Duan P G, Li P L, Yang Z P, Guo Q L 2014 Acta Phys. Sin. 63 077802[王志军, 刘海燕, 杨勇, 蒋海峰, 段平光, 李盼来, 杨志平, 郭庆林 2014 物理学报 63 077802]
[19]
He W, Xue W D, Tang B 2012 The Method of Opti-mal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp185-190 (in Chinese)[何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析 (北京: 化学工业出版社) 第185—190页]
[20]
Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys Sin. 62 203301[翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301]
[21]
Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933[程仕平, 徐慧, 王德志, 王光君, 吴壮志 2007 稀有金属材料与工程 36 1933]
[22]
Gao D H, Luo J, Ge M Q 2013 New Chem. Mater. 41 30[高大海, 罗军, 葛明桥 2013 化工新型材料 41 30]
[23]
Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862
[24]
Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845
[25]
Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002[石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014 光子学报 43 1116002]
[26]
Wu H, Hu Y, Chen L, Wang X 2011 J. Alloy. Compd. 509 4304
[27]
Chen R 1969 J. Appl. Phys. 40 570
[28]
Zhang Z, Xu X H, Qiu J B, Zhang X, Yu X 2014 Spetroscopy Spectral Anal. 34 1486[张哲, 徐旭辉, 邱建备, 张新, 余雪 2014 光谱学与光谱分析 34 1486]
[29]
Qi Z J, Huang W G 2013 Acta Phys Sin. 62 197801[齐智坚, 黄维刚 2013 物理学报 62 197801]
数据正在加载中...
中国物理学会期刊网