中国物理学会期刊网
物理学报  2019, Vol.68 Issue (9): 090203  DOI:10.7498/aps.68.20190169
非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法
扬州大学数学科学学院, 水利与能源动力工程学院, 扬州 225002
Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method
School of Mathematical Sciences, School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225002, China

摘要

为提高传统光滑粒子动力学(SPH)方法求解高维非线性薛定谔(nonlinear Schrödinger/Gross-Pitaevskii equation,NLS/GP)方程的数值精度和计算效率,本文首先基于高阶时间分裂思想将非线性薛定谔方程分解成线性导数项和非线性项,其次拓展一阶对称SPH方法对复数域上线性导数部分进行显式求解,最后引入MPI并行技术,结合边界施加虚粒子方法给出一种能够准确、高效地求解高维NLS/GP方程的高阶分裂修正并行SPH方法. 数值模拟中,首先对带有周期性和Dirichlet边界条件的NLS方程进行求解,并与解析解做对比,准确地得到了周期边界下孤立波的奇异性,且对提出方法的数值精度、收敛速度和计算效率进行了分析; 随后,运用给出的高阶分裂粒子方法对复杂二维和三维NLS/GP问题进行了数值预测,并与其他数值结果进行比较,准确地展现了非线性孤立波传播中的奇异现象和玻色-爱因斯坦凝聚态中带外旋转项的量子涡旋变化过程.

Abstract

To improve the numerical accuracy and computational efficiency of solving high-dimensional nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP) equation by using traditional SPH method, a high-order split-step coupled with a corrected parallel SPH (HSS-CPSPH) method is developed by applying virtual particles to the boundary. The improvements are described as follows. Firstly, the nonlinear Schrödinger equation is divided into linear derivative term and nonlinear term based on the high-order split-step method. Then, the linear derivative term is solved by extending the first-order symmetric SPH method in explicit time integration. Meanwhile, the MPI parallel technique is introduced to enhance the computational efficiency. In this work, the accuracy, convergence and the computational efficiency of the proposed method are tested by solving the NLS equations with the periodic and Dirichlet boundary conditions, and compared with the analytical solutions. Also, the singularity of solitary waves under the periodic boundary condition is accurately obtained using the proposed particle method. Subsequently, the proposed HSS-CPSPH method is used to predict the results of complex two-dimensional and three-dimensioanl GP problems which are compared with other numerical results. The phenomenon of singular sharp angle in the propagation of nonlinear solitary wave and the process of quantum vortex under Bose-Einstein condensates with external rotation are presented accurately.
收稿日期:2019-01-29

基金资助

国家自然科学基金(批准号:11501495,51779215)、中国博士后科学基金(批准号:2015M581869,2015T80589)、江苏省自然科学基金(批准号:BK20150436)、国家科技支撑计划(批准号:2015BAD24B02-02)、江苏高校品牌专业建设工程(批准号:PPZY2015B109)和江苏省大学生科技创新项目(批准号:201611117016Z)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51779215), the China Postdoctoral Science Foundation of China (Grant Nos. 2015M581869, 2015T80589), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150436), the National Key Technologies Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAD24B02-02), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (Grant No. PPZY2015B109), and the Undergraduate Research and Innovation Project of Jiangsu Province, China (Grant No. 201611117016Z).

引用本文

[中文]
蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法[J]. 物理学报, 2019, 68(9): 090203.
[英文]
Jiang Tao, Huang Jin-Jing, Lu Lin-Guang, Ren Jin-Lian. Numerical study of nonlinear Schrödinger equation with high-order split-step corrected smoothed particle hydrodynamics method[J]. Acta Phys. Sin., 2019, 68(9): 090203.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Bandrauk A D, Shen H 1994 J. Phys. A:Gen. Phys. 27 7147
[2]
Yoshida H 1990 Phys. Lett. A 150 262
[3]
Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382
[4]
Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203
[5]
Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827
[6]
Bao W Z, Wang H Q 2006 J. Comput. Phys. 217 612
[7]
Bao W Z, Shen J 2005 SIAM J. Sci. Comput. 26 2010
[8]
Wang H Q 2005 Appl. Math. Comput. 170 17
[9]
Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115
[10]
Chen RY, Nie L R, Chen C Y, Wang C J 2017 J. Stat. Mech. 2017 013201
[11]
Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113
[12]
Chen R Y, Tong L M, Nie L R, Wang C I, Pan W 2017 Physica A 468 532
[13]
Gao Y L, Mei L Q 2016 Appl. Numer. Math. 109 41
[14]
Xu Y, Shu C W 2005 J. Comput. Phys. 205 72-97
[15]
Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19
[16]
Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25
[17]
Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201[蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201]
[18]
Chen J K, Beraun J E 2000 Comput. Meth. Appl. Mech. Eng. 190 225
[19]
Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics:A Mesh-free Particle Method (Singapore:World Scientific)
[20]
Crespo A J C, Domínguez J M, Rogers B D, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O 2015 Comput. Phys. Commun. 187 204
[21]
Ren J L, Jiang T, Lu W G, Li G 2016 Comput. Phys. Commun. 205 87
[22]
Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654[刘谋斌, 常建忠 2010 物理学报 59 3654]
[23]
Sun P N, Colagrosso A, Marrone S, Zhang A M 2016 Comput. Meth. Appl. Mech. Eng. 305 849
[24]
Huang C, Lei J M, Liu M B, Peng X Y 2015 Int. J. Numer. Methods Fluids 78 691
[25]
Huang C, Zhang D H, Shi Y X, Si Y L, Huang B 2018 Int. J. Numer. Meth. Eng. 113 179
[26]
Weideman J A C, Herbst B M 1986 SIAM J. Numer. Anal. 23 485
数据正在加载中...
中国物理学会期刊网