中国物理学会期刊网
物理学报  2019, Vol.68 Issue (9): 090301  DOI:10.7498/aps.68.20182077
基于光子计数的纠缠微波压缩角锁定
空军工程大学信息与导航学院, 西安 710077
Squeezing angle locking of entangled microwave based on photon counting
Information and Navigation College, Air Force Engineering University, Xi'an 710077, China

摘要

针对基于超导180°混合环的纠缠微波制备方案探测效率低、信息处理难以及控制复杂等问题,设计了基于微波光子计数的压缩角锁定方案. 对超导180°混合环的输出信号进行微波光子计数,通过贝叶斯准则估计输入压缩态微波场的相对压缩角,并将压缩角校正信息反馈于约瑟夫森参量放大器抽运源,调整两路单模压缩态微波场的相对压缩角为180°,达到控制输出纠缠性能最优的目的. 该研究为路径纠缠微波的纠缠性能的提升以及高质量纠缠微波源的设计提供了理论参考.

Abstract

Quantum entanglement possesses important applications in quantum computation, quantum communication, and quantum precision measurement. It is also an important method to improve the performance of quantum radar and quantum radio navigation. However, the penetration of light wave is poor due to the high frequency, which leads to detecting limitations in bad weather. In this context, quantum entanglement in the microwave domain has been extensively studied, and it is hopeful to overcome the above-mentioned defects in quantum optics. Although the entangled microwave preparation of continuous variable is achievable at present, there exist still some problems such as poor entanglement performance, low entanglement efficiency, complex signal processing and control, which restrict the development of entangled microwave sources. In order to improve the entanglement performance in microwave domain, a squeezing-angle locking scheme based on single photon counting is proposed. First, two Josephson parametric amplifiers (JPAs) are driven respectively by two pump signals to generate two single-mode squeezed states which are uncorrelated to each other. Next, the squeezing angle difference between the two single-mode squeezed states is adjusted to 180°, and then the two signals are mixed in a superconducting 180° hybrid ring coupler for two entangled microwave outputs. The outputs are single photon detected, and the results are sent to the data processor for solution. The squeezing angle difference between the input single-mode squeezed microwaves is estimated by Bayesian criterion and compared with the target value to calculate the error. Finally, the squeezing angle correction information is fed back into the JPA pump to control the squeezing angle of the single-mode squeezed microwave of the JPA output as well as the relative squeezing angle to reach the target value. Thus, the dual-path entangled microwave with the optimal entanglement performance is output. Comparing with the existing entangled microwave preparation schemes, a single photon counter is utilized in the scheme of this paper, which leads to a detection efficiency of 90%. In addition, the Bayesian criterion is used to estimate the output result, and the theoretical precision reaches the quantum Cramer-Rao lower bound. Meanwhile, the introduced noise level and operation difficulty are reduced, which greatly improves the property of dual-path entangled microwave preparation.
收稿日期:2018-11-22

基金资助

国家自然科学基金(批准号:61573372,61603413)和空军工程大学校长基金(批准号:XZJY2018038)资助的课题.
Project supported by the National Natural Science Foundation of China (Grant Nos. 61573372, 61603413) and the Principal Fund of Air Force Engineering University, China (Grant No. XZJY2018038).

引用本文

[中文]
魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定[J]. 物理学报, 2019, 68(9): 090301.
[英文]
Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting[J]. Acta Phys. Sin., 2019, 68(9): 090301.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Meschede D, Walther H, Müller G 1985 Phys. Rev. Lett. 54 551
[2]
Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H, Simon R W 1988 Phys. Rev. Lett. 60 764
[3]
Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901
[4]
Menzel E P, Candia R D, Deppe F, Eder P, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502
[5]
Andersen U L, Neergaard-Nielsen J S, van Locck P, Furusawa A 2015 Nat. Phys. 11 713
[6]
Marshall K, Jacobsen C S, Schafermeier C, Gehring T, Weedbrook C, Andersen U L 2016 Nat. Commun. 7 13795
[7]
Sanz M, Las H U, Garcia R, Solano E, Di C R 2017 Phys. Rev. Lett. 118 070803
[8]
Xiong B, Li X, Wang X Y, Zhou L 2017 Ann. Phys. 385 757
[9]
Li X, Wu D W, Wei T L, Miao Q, Zhu H N, Yang C Y 2018 AIP Adv. 8 065217
[10]
Fedorov K G, Pogorzalek S, Las Heras U, Sanz M, Yard P, Eder P, Fische M R, Goetz, Xie J E, Inomata K, Nakamura Y, Candia D R, Solano E, Marx A, Deppe F, Gross R 2018 Sci. Rep. 8 6416
[11]
Beltran M A C 2010 Ph. D. Dissertation (Colorado:University of Colorado)
[12]
Ku H S, Kindel W F, Mallet F 2015 Phys. Rev. A 91 042305
[13]
Eichler C, Bozyigit D, Lang C 2011 Phys. Rev. Lett. 107 113601
[14]
Zhu H N, Wu D W, Li X, Wang X L, Miao Q, Fang G 2018 Acta Phys. Sin. 67 040301[朱浩男, 吴德伟, 李响, 苗强, 方冠 2018 物理学报 67 040301]
[15]
Koshino K, Inomata K, Lin Z, Nakamura Y, Yamamoyo T 2015 Phys. Rev. A 91 43805
[16]
Sathyamoorthy S R, Stace T M, Johansson G 2016 C. R. Phys. 17 756
[17]
Koshino K, Lin Z, Inomata K, Yamamoyo T, Nakamura Y 2016 Phys. Rev. A 93 23824
[18]
Fan B, Johansson G, Combes J, Mibrun G J, Stace T M 2014 Phys. Rev. B 90 035132
[19]
Guo W J 2016 Ph. D. Dissertation (Chengdu:Southwest Jiaotong University) (in Chinese)[郭伟杰 2016 博士学位论文 (成都:西南交通大学)]
[20]
Chen K, Chen S X, Wu D W, Yang C Y, Miao Q 2017 Acta Photon. Sin. 46 0512003
[21]
Yurke B, Mccall S L, Klauder J R 1986 Phys. Rev. A 33 4033
[22]
Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998 Phys. Rev. A 58 883
[23]
Viasl G, Werner R F 2002 Phys. Rev. A 65 032314
数据正在加载中...
中国物理学会期刊网