中国物理学会期刊网
Chin.Phys.B  2017, Vol.26 Issue (8): 086801  DOI:10.1088/1674-1056/26/8/086801
Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110)
1 Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing 100190, China;2 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China>

Abstract

Here we report the thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl (DAT) molecules on Au (110), which are investigated by scanning tunneling microscopy (STM) combined with density functional theory (DFT) based calculations. With the deposition of monolayer DAT molecules on Au (110) and subsequent annealing at 100 ℃, all DAT molecules adsorb on a (1×5) reconstructed surface with a ladder-like structure. After annealing the sample at about 200 ℃, STM images show three distinct domains, including DAT molecules on a (1×3) reconstructed surface, dehydrogenated molecules with two hydrogen atoms detached from one amino group (-2H-DAT) on a (1×5) reconstructed surface and dehydrogenated molecules with four hydrogen atoms detached from two amino groups (-4H-DAT) on a (1×3) reconstructed surface through N-Au bonds. Furthermore, after annealing the sample to 350 ℃, STM image shows only one self-assembled structure with -4H-DAT molecules on a (1×3) reconstructed surface. Relative STM simulations of different self-assembled structures show excellent agreements with the experimental STM images at different annealing temperatures. Further DFT calculations on the dehydrogenation process of DAT molecule prove that the dehydrogenation barrier on a (1×5) reconstructed surface is lower than that on (1×3) one, which demonstrate the experimental results that the formation temperature of a (1×3) reconstructed surface is higher than that of a (1×5) one.
收稿日期:2017-05-15

基金资助

Project supported by the National Natural Science Foundation of China (Grant Nos. 61390501, 61471337, 61622116, and 51325204), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ1203451), the CAS Hundred Talents Program, the Transregional Collaborative Research Center TRR 61 (Grant No. 21661132006), and the National Supercomputing Center in Tianjin. A portion of the research was performed in CAS Key Laboratory of Vacuum Physics.

引用本文

[英文]
Junhai Ren, Deliang Bao, Li Dong, Lei Gao, Rongting Wu, Linghao Yan, Aiwei Wang, Jiahao Yan, Yeliang Wang, Shixuan Du, Qing Huan, Hongjun Gao. Thermo-controllable self-assembled structures of single-layer 4, 4"-diamino-p-terphenyl molecules on Au (110)[J]. Chin. Phys. B, 2017, 26(8): 086801.
[1]
Shi Z L and Lin N 2009 J. Am. Chem. Soc. 131 5376
[2]
Shi Z L and Lin N 2010 J. Am. Chem. Soc. 132 10756
[3]
Bartels L 2010 Nat. Chem. 2 87
[4]
Sun Q, Cai L L, Ma H H, Yuan C X and Xu W 2015 Chem. Commun. 51 14164
[5]
Zhang H G, Xiao W D, Mao J H, Zhou H T, Li G, Zhang Y, Liu L W, Du S X and Gao H J 2012 J. Phys. Chem. C 116 11091
[6]
Fortuna S, Gargiani P, Betti M G, Mariani C, Calzolari A, Modesti S and Fabris S 2012 J. Phys. Chem. C 116 6251
[7]
Yang K, Xiao W D, Jiang Y H, Zhang H G, Liu L W, Mao J H, Zhou H T, Du S X and Gao H J 2012 J. Phys. Chem. C 116 14052
[8]
Chen Q, Bae S C and Granick S 2011 Nature 469 381
[9]
Mao J H, Zhang H G, Jiang Y H, Pan Y, Gao M, Xiao W D and Gao H J 2009 J. Am. Chem. Soc. 131 14136
[10]
Wu R T, Yan L H, Zhang Y F, Ren J H, Bao D L, Zhang H G, Wang Y L, Du S X, Huan Q and Gao H J 2015 J. Phys. Chem. C 119 8208
[11]
Shang J, Wang Y F, Chen M, Dai J X, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried J M and Wu K 2015 Nat. Chem. 7 389
[12]
Liu J, Lin T, Shi Z L, Xia F, Dong L, Liu P N and Lin N 2011 J. Am. Chem. Soc. 133 18760
[13]
Wang X Y, Zhao F P, Wang J and Yan Y B 2016 Acta Phys. Sin. 65 178105 (in Chinese)
[14]
Peng Y, Luo X X, Fu Y and Xing M M 2013 Acta Phys. Sin. 62 208105 (in Chinese)
[15]
Barth J V, Costantini G and Kern K 2005 Nature 437 671
[16]
Furukawa H, Cordova K E, O'Keeffe M and Yaghi O M 2013 Science 341 1230444
[17]
Kurmoo M 2009 Chem. Soc. Rev. 38 1353
[18]
Itabashi A, Fukushima M and Murata H 2008 Jpn. J. Appl. Phys. 47 1271
[19]
Nishimura T, Sasahara A, Murata H, Arai T and Tomitori M 2014 J. Phys. Chem. C 118 25104
[20]
Nishimura T, Itabashi A, Sasahara A, Murata H, Arai T and Tomitori M 2010 J. Phys. Chem. C 114 11109
[21]
Betti M G, Gargiani P, Mariani C, Turchini S, Zema N, Fortuna S, Calzolari A and Fabris S 2012 J. Phys. Chem. C 116 8657
[22]
Zhong D Y, Franke J H, Podiyanachari S K, Blomker T, Zhang H M, Kehr G, Erker G, Fuchs H and Chi L F 2011 Science 334 213
[23]
Walen H, Liu D J, Oh J, Yang H J, Kim Y and Thiel P A 2015 J. Phys. Chem. C 119 21000
[24]
Rauls E, Schmidt W G, Pertram T and Wandelt K 2012 Surf. Sci. 606 1120
[25]
Guaino P, Carty D, Hughes G, McDonald O and Cafolla A A 2004 Appl. Phys. Lett. 85 2777
[26]
Cui P, Zhang Q, Zhu H B, Li X X, Wang W Y, Li Q X, Zeng C G and Zhang Z Y 2016 Phys. Rev. Lett. 116 026802
[27]
Floreano L, Cossaro A, Cvetko D, Bavdek G and Morgante A 2006 J. Phys. Chem. B 110 4908
[28]
Vanderbilt D 1990 Phys. Rev. B 41 7892
[29]
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30]
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31]
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[32]
Wu X, Vargas M C, Nayak S, Lotrich V and Scoles G 2001 J. Chem. Phys. 115 8748
[33]
Sheppard D, Terrell R and Henkelman G 2008 J. Chem. Phys. 128 134106
[34]
Knor M, Gao H Y, Amirjalayer S, Studer A, Gao H J, Du S X and Fuchs H 2015 Chem. Commun. 51 10854
数据正在加载中...
中国物理学会期刊网