中国物理学会期刊网
Chin.Phys.B  2018, Vol.27 Issue (10): 100301  DOI:10.1088/1674-1056/27/10/100301
Decoherence of macroscopic objects from relativistic effect
1 Beijing Computational Science Research Center, Beijing 100193, China;2 Graduate School of China Academy of Engineering Physics, Beijing 100193, China>

Abstract

We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass (CM) characterizing the collective quantum state of a macroscopic object (MO), it is found that an MO consisting of N particles can decohere with a time scale of no more than √N-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c2, which intrinsically results in the above minimum decoherence.
收稿日期:2018-06-07

基金资助

Project supported by the National Natural Science Foundation of China (Grant Nos. 11421063 and 11534002), the National Key Basic Research Program of China (Grant No. 2014CB921403), the National Key Research and Development Program of China (Grant No. 2016YFA0301201), and the NSAF (Grant No. U1530401).

引用本文

[英文]
Guo-Hui Dong, Yu-Han Ma, Jing-Fu Chen, Xin Wang, Chang-Pu Sun. Decoherence of macroscopic objects from relativistic effect[J]. Chin. Phys. B, 2018, 27(10): 100301.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Griffiths D J 2017 Introduction to Quantum Mechanics (Cambridge:Cambridge University Press) pp. 1-18
[2]
Sakurai J J 1995 Modern Quantum Mechanics (Massachusetts:Addison-Wesley) p. 12
[3]
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Communication (Cambridge:Cambridge University) p. 13
[4]
Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[5]
Schrodinger E 1926 Phys. Rev. 28 1049
[6]
Born M 1926 Z. Phys. 38 803
[7]
Breuer H P and Petruccione F 2002 The theory of open quantum systems (Oxfor:Oxford University Press) p. 220
[8]
Zurek W H 1991 Phys. Today 44 36
[9]
Zurek W H 2003 Rev. Mod. Phys. 75 715
[10]
Zurek W H 1981 Phys. Rev. D 24 1516
[11]
Quan H T, Song Z, Liu X P, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[12]
Rossini D, Calarco T, Giovannetti V, Montangero S and Fazio R 2007 Phys. Rev. A 75 032333
[13]
Sun Z, Wang X G, Gao Y B and Sun C P 2008 Eur. Phys. J. D 46 521
[14]
Joos E and Zeh H D 1985 Zeits. Phys. B 59 223
[15]
Schrodinger E 1935 Naturwiss 23 807
[16]
Schlosshauer M 2005 Rev. Mod. Phys. 76 1247
[17]
Sun C P, Zhou D L, Yu S X and Liu X F 2001 Eur. Phys. J. D 13 145
[18]
Sun C P, Zhou D L, Yu S X and Liu X F 2001 Eur. Phys. J. D 17 85
[19]
Carazza C 1999 J. Phys. A 32 6619
[20]
Pikovski I, Zych M, Costa F and Brukner C 2015 Nat. Phys. 11 668
[21]
Peskin M E and Schroeder D V 1995 An Introduction to Quantum Field Theory (New York:Addison-Wesley) pp. 40-43
[22]
Foldy L L and Wouthuysen S A 1950 Phys. Rev. 78 29
[23]
Arndt M, Nairz O, Voss-Andreae J, Keller C, van der Zouw G and Zeilinger A 1999 Nature 401 680
[24]
Paz J P, Habib S and Zurek W H 1993 Phys. Rev. D 47 488
[25]
Fisher R A, Nieto M M and Sandberg V D 1984 Phys. Rev. D 29 1107
[26]
Justin J Z 2005 Path integral in quantum mechanics (Oxford:Oxford University Press) pp. 2-4
数据正在加载中...
中国物理学会期刊网