中国物理学会期刊网
Chin.Phys.B  2018, Vol.27 Issue (9): 098801  DOI:10.1088/1674-1056/27/9/098801
Potentials of classical force fields for interactions between Na+ and carbon nanotubes
1 Department of Physics and Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China;2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China>

Abstract

Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a crucial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical software such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-π interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accumulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.
收稿日期:2018-05-11

基金资助

Project supported by the National Science Fund for Outstanding Young Scholars of China (Grant No. 11722548) and the National Natural Science Foundation of China (Grant Nos. 11574339 and 11404361).

引用本文

[英文]
De-Yuan Li, Guo-Sheng Shi, Feng Hong, Hai-Ping Fang. Potentials of classical force fields for interactions between Na+ and carbon nanotubes[J]. Chin. Phys. B, 2018, 27(9): 098801.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J and Mayes A M 2008 Nature 452 301
[2]
Elimelech M and Phillip W A 2011 Science 333 712
[3]
Liu J, Shi G S, Guo P, Yang J R and Fang H P 2015 Phys. Rev. Lett. 115 164502
[4]
Whitby M and Quirke N 2007 Nat. Nanotechnol. 2 87
[5]
Liu J, Shi G S and Fang H P 2017 Nanotechnology 28 084004
[6]
Moradi F, Ganji M D and Sarrafi Y 2017 Phys. Chem. Chem. Phys. 19 8388
[7]
Wan R Z, Li J Y, Lu H J and Fang H P 2005 J. Am. Chem. Soc. 127 7166
[8]
Li J Y, Gong X J, Lu H J, Li D, Fang H P and Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[9]
Vukovi? L, Vokac E and Král P 2014 J. Phys. Chem. Lett. 5 2131
[10]
Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073
[11]
Su J Y, Zhao Y Z, Fang C, Ahmed S B and Shi Y 2017 Phys. Chem. Chem. Phys. 19 22406
[12]
Qin X C, Yuan Q Z, Zhao Y P, Xie S B and Liu Z F 2011 Nano Lett. 11 2173
[13]
Howorka S and Siwy Z 2009 Chem. Soc. Rev. 38 2360
[14]
Bianco A, Kostarelos K and Prato M 2005 Curr. Opin. Chem. Biol. 9 674
[15]
Zang J L, Yuan Q Z, Wang F C and Zhao Y P 2009 Comput. Mater. Sci. 46 621
[16]
Hilder T A and Hill J M 2009 Small 5 300
[17]
Tasis D, Tagmatarchis N, Bianco A and Prato M 2006 Chem. Rev. 106 1105
[18]
Meng S, Wang W L, Maragakis P and Kaxiras E 2007 Nano Lett. 7 2312
[19]
Zhao Y and Truhlar D G 2007 J. Am. Chem. Soc. 129 8440
[20]
Yuan Q Z and Zhao Y P 2009 Biomicrofluidics 3 6
[21]
Yuan Q Z and Zhao Y P 2009 J. Am. Chem. Soc. 131 6374
[22]
Garcia-Fandiño R and Sansom M S P 2012 Proc. Natl. Acad. Sci. USA 109 6939
[23]
Yang L H, Gordon V D, Trinkle D R, Schmidt N W, Davis M A, DeVries C, Som A, Cronan J E, Tew G N and Wong G C L 2008 Proc. Natl. Acad. Sci. USA 105 20595
[24]
Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[25]
Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. USA 100 10175
[26]
Striolo A 2006 Nano Lett. 6 633
[27]
Tu Y S, Xiu P, Wan R Z, Hu J, Zhou R H and Fang H P 2009 Proc. Natl. Acad. Sci. USA 106 18120
[28]
Falk K, Sedlmeier F, Joly L, Netz R R and Bocquet L 2010 Nano Lett. 10 4067
[29]
Majumder M, Chopra N, Andrews R and Hinds B J 2005 Nature 438 44
[30]
Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[31]
Corry B 2008 J. Phys. Chem. B 112 1427
[32]
Jia Y X, Li H L, Wang M, Wu L Y and Hu Y D 2010 Sep. Purif. Technol. 75 55
[33]
Secchi E, Marbach S, Nigues A, Stein D, Siria A and Bocquet L 2016 Nature 537 210
[34]
Lee C Y, Choi W, Han J and Strano M S 2010 Science 329 1320
[35]
Choi W, Lee C Y, Ham M, Shimizu S and Strano M S 2011 J. Am. Chem. Soc. 133 203
[36]
Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[37]
Frisch G W T M J, Schlegel H B, Scuseria G E, et al. 2009 Gaussian 09 (Revision A. 01) (Wallingford CT:Gaussian Inc)
[38]
Shi G S, Ding Y H and Fang H P 2012 J. Comput. Chem. 33 1328
[39]
Shi G S, Chen L, Yang Y Z, Li D Y, Qian Z, Liang S S, Yan L, Li L H, Wu M H and Fang H P 2018 Nat. Chem. 10 776
[40]
Gao S H, Shi G S and Fang H P 2016 Nanoscale 8 1451
[41]
Chen L, Shi G S, Shen J, Peng B, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, Xu G, Liu G P, Zeng J R, Zhang L J, Yang Y Z, Zhou G Q, Wu M H, Jin W Q, Li J Y and Fang H P 2017 Nature 550 380
[42]
Shi G S, Dang Y R, Pan T T, Liu X, Liu H, Li S X, Zhang L J, Zhao H W, Li S P, Han J G, Tai R Z, Zhu Y M, Li J C, Ji Q, Mole R A, Yu D H and Fang H P 2016 Phys. Rev. Lett. 117 238102
[43]
Lyu G X, Shi G S, Tang L, Fang H P and Wu M H 2017 Phys. Chem. Chem. Phys. 19 9354
[44]
Shi G S, Yang J R, Ding Y H and Fang H P 2014 ChemPhysChem. 15 2588
[45]
Yang J R, Shi G S, Tu Y S and Fang H P 2014 Angew. Chem. Int. Ed. 53 10190
[46]
Shi G S, Liu J, Wang C L, Song B, Tu Y S, Hu J and Fang H P 2013 Sci. Rep. 3 3436
数据正在加载中...
中国物理学会期刊网