中国物理学会期刊网
Chin.Phys.B  2019, Vol.28 Issue (6): 068203  DOI:10.1088/1674-1056/28/6/068203
Hard carbons derived from pine nut shells as anode materials for Na-ion batteries
1 China Institute of Atomic Energy, Beijing 102413, China;2 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China>

Abstract

Hard carbons as promising anode materials for Na-ion batteries (NIBs) have captured extensive attention because of their low operation voltage, easy synthesis process, and competitive specific capacity. However, there are still several disadvantages, such as high cost and low initial coulombic efficiency, which limit their large-scale commercial applications. Herein, pine nut shells (PNSs), a low-cost biomass waste, are used as precursors to prepare hard carbon materials. Via a series of washing and heat treatment procedures, a pine nut shell hard carbon (PNSHC)-1400 sample has been obtained and delivers a reversible capacity of around 300 mAh/g, a high initial coulombic efficiency of 84%, and good cycling performance. These excellent Na storage properties indicate that PNSHC is one of the most promising candidates of hard carbon anodes for NIBs.
收稿日期:2019-03-27

基金资助

Project supported by the President Fund Project of China Institute of Atomic Energy.

引用本文

[英文]
Hao Guo, Kai Sun, Yaxiang Lu, Hongliang Wang, Xiaobai Ma, Zhengyao Li, Yong-Sheng Hu, Dongfeng Chen. Hard carbons derived from pine nut shells as anode materials for Na-ion batteries[J]. Chin. Phys. B, 2019, 28(6): 068203.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Bruce P G 2008 Solid State Ion 179 752
[2]
Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167
[3]
Tarascon J M, Arm and M 2001 Nature 414 359
[4]
Palomares V, Serras P, Villaluenga I, Hueso K B, Gonzalez J and Rojo T 2012 Energy Environ. Sci. 5 5884
[5]
Palomares V, Cabanas M, Martínez E, Han M H and Rojo T 2013 Energy Environ. Sci. 6 2312
[6]
Wang Q, Zhao C, Lu Y, Li Y, Zheng Y, Qi Y, Rong X, Jiang L, Qi X, Shao Y, Pan D, Li B, Hu Y S and Chen L 2017 Small 7 1701835
[7]
Kubota K, Yabuuchi N, Yoshida H, Dahbi M and Komaba S 2014 MRS Bull. 39 416
[8]
Guo H, Wang Y, Han W, Yu Z, Qi X, Sun K, Hu Y S, Liu Y, Chen D and Chen L 2015 Electrochim. Acta 158 258
[9]
Guo G, Wang C, Ming B, Luo S, Su H, Wang B, Zhang M, Yu H J and Wang R Z 2018 Chin. Phys. B 27 118801
[10]
Xu S, Wu X, Li Y, Hu Y S and Chen L 2014 Chin. Phys. B 23 118202
[11]
Mu L, Hu Y S and Chen L 2015 Chin. Phys. B 24 038202
[12]
Wang Y, Xiao R, Hu Y S, Avdeev M and Chen L 2015 Nat. Commun. 6 6954
[13]
Jian Z, Zhao L, Pan H, Hu Y S, Li H, Chen W and Chen L 2012 Electrochem. Commun. 14 86
[14]
Kawabe Y, Yabuuchi N, Kajiyama M, Fukuhara N, Inamasu T, Okuyama R, Nakai I and Komaba S 2011 Electrochem. Commun. 13 1225
[15]
Song W, Ji X, Chen J, Wu Z, Zhu Y, Ye K, Hou H, Jing M and Banks C E 2015 Phys. Chem. Chem. Phys. 17 159
[16]
Doeff M M, Ma Y, Visco S J and Jonghe L C 1993 J. Electrochem. Soc. 140 169
[17]
Liu Y, Merinov B V and Goddard W A 2016 Proc. Natl. Acad. Sci. 113 3735
[18]
Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J and Wang C S 2014 Nat. Commun. 5 4033
[19]
Jache B and Adelhelm P 2014 Angew. Chem. Int. Ed. 53 10169
[20]
Stevens D A and Dahn J R 2000 J. Electrochem. Soc. 147 1271
[21]
Stevens D A and Dahn J R 2001 J. Electrochem. Soc. 148 803
[22]
Li Y, Hu Y S, Qi X, Rong X, Li H, Huang X and Chen L 2016 Energy Storage Mat. 5 191
[23]
Li Y, Hu Y S, Li H, Chen L and Huang X 2016 J. Mater. Chem. A 4 96
[24]
Li Y, Hu Y S, Titirici M M, Chen L and Huang X 2016 Adv. Energy Mater. 1600659
[25]
Zhao C, Wang Q, Lu Y, Li B, Chen L and Hu Y S 2018 Sci. Bull. 63 1125
[26]
Xu S D, Zhao Y, Liu S, Ren X, Chen L, Shi W, Wang X and Zhang D 2018 J. Mater. Sci. 53 12334
[27]
Sun N, Liu H and Xu B 2015 J. Mater. Chem. A 3 20560
[28]
Lu Y, Zhao C, Qi X, Qi Y, Li H, Huang X, Chen L and Hu Y S 2018 Adv. Energy Mater. 1800108
[29]
Li Z, Bommier C, Chong Z, Jian Z, Surta T Z, Wang X, Xing Z, Neuefeind J C, Stickle W F, Dolgos M, Greaney P A and Ji X 2017 Adv. Energy Mater. 1602894
[30]
Li W, Zhou M, Li H, Wang K, Cheng S and Jiang K 2015 Energy Environ. Sci. 8 2916
[31]
Wenzel S, Hara T, Janek J and Adelhelm P 2011 Energy Environ. Sci. 4 3342
[32]
Tang K, Fu L, White R J, Yu L, Titirici M M, Antonietti M and Maier J 2012 Adv. Energy Mater. 2 873
[33]
Cao Y L, Xiao L, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L V, Yang Z and Liu J 2012 Nano Lett. 12 3783
[34]
Qiu S, Xiao L, Sushko M L, Han K S, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H and Liu J 2017 Adv. Energy Mater. 7 1700403
[35]
Bommier C, Surta T W, Dolgos M and Ji X L 2015 Nano Lett. 15 5888
[36]
Bai P, He Y, Zou X, Zhao X, Xiong P and Xu Y 2018 Adv. Energy Mater. 1703217
[37]
Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J and Komaba S 2018 J. Mater. Chem. A 6 16844
[38]
Xie X, Kretschmer K, Zhang J, Sun B, Su D and Wang G 2015 Nano Energy 13 208
[39]
Qian J, Chen Y, Wu L, Cao Y, Ai X and Yang H 2012 Chem. Commun. 48 7070
[40]
Song J, Yu Z, Gordin M L, Hu S, Yi R, Tang D, Walter T, Regula M, Choi D, Li X, Manivannan A and Wang D 2014 Nano Lett. 14 6329
[41]
Chen C, Xu H, Zhou T, Guo Z, Chen L, Yan M, Mai L, Hu P, Cheng S, Huang Y and Xie J 2016 Adv. Energy Mater. 6 1600322
[42]
Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y S, Li H, Yang X, Chen L and Huang X 2013 Nat. Commun. 4 7
[43]
Zhao C, Avdeev M, Chen L and Hu Y S 2018 Angew. Chem. Int. Ed. 130 7174
[44]
Zhao L, Pan H, Hu Y S, Li H and Chen L 2012 Chin. Phys. B 21 028201
[45]
Zhao L, Pan H, Hu Y S, Li H and Chen L 2012 Chin. Phys. B 21 079901
[46]
Yu J, Hu Y S, Li H, Huang X and Chen L 2017 Acta Phys. Sin. 66 088201 (in Chinese)
数据正在加载中...
中国物理学会期刊网