中国物理学会期刊网
Chin. Phys. Lett.  2018, Vol.35 Issue (7): 076802  DOI:10.1088/0256-307X/35/7/076802
Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy
1State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 1000842Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190>

Abstract

Quantum anomalous Hall (QAH) effect is a quantum Hall effect that occurs without the need of external magnetic field. A system composed of multiple parallel QAH layers is an effective high Chern number QAH insulator and the key to the applications of the dissipationless chiral edge channels in low energy consumption electronics. Such a QAH multilayer can also be engineered into other exotic topological phases such as a magnetic Weyl semimetal with only one pair of Weyl points. This work reports the first experimental realization of QAH multilayers in the superlattices composed of magnetically doped (Bi,Sb)$_{2}$Te$_{3}$ topological insulator and CdSe normal insulator layers grown by molecular beam epitaxy. The obtained multilayer samples show quantized Hall resistance $h/Ne^{2}$, where $h$ is Planck's constant, $e$ is the elementary charge and $N$ is the number of the magnetic topological insulator layers, resembling a high Chern number QAH insulator. The QAH multilayers provide an excellent platform to study various topological states of matter.
收稿日期:2018-06-08

基金资助

Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303303, the National Natural Science Foundation of China under Grant No 51661135024, and the Beijing Advanced Innovation Center for Future Chip (ICFC).

引用本文

[英文]
Gaoyuan Jiang, Yang Feng, Weixiong Wu, Shaorui Li, Yunhe Bai, Yaoxin Li, Qinghua Zhang, Lin Gu, Xiao Feng, Ding Zhang, Canli Song, Lili Wang, Wei Li, Xu-Cun Ma, Qi-Kun Xue, Yayu Wang, Ke He. Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy[J]. CPL, 2018, 35(7): 076802.
使用本文
PACS
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
数据正在加载中...
中国物理学会期刊网