中国物理学会期刊网
物理  2017, Vol.46 Issue (11): 721-730  DOI:10.7693/wl20171102
声学超构表面
(同济大学物理科学与工程学院 声学研究所 上海 200092)
Acoustic metasurfaces
(Institute of Acoustics,School of Physics Science and Engineering,Tongji University,Shanghai 200092,China)

摘要

声学超构表面是当前声学领域的研究热点,其是一种由人工微单元构成的超薄平面结构,由于其具备平面、超薄等独特物理特性及对声波的灵活调控能力,使得其在降噪隔振、隐身技术、非接触操控物体等诸多声学领域具有重要的应用前景。文章以反射型、吸收型、透射型声学超构表面为框架,深入介绍超构表面高效调控声波的物理机制并举例展示了其构建复杂声场的能力,包括任意点反射聚焦、低频完美吸声、自弯曲声束、螺旋声波以及声能量非对称传输。

Abstract

The study of acoustic metasurfaces is a hot research topic involving novel planar structures composed of artificial acoustic micro-units. Due to its planar, ultrathin physical features and the great capabilities of wavefront control, acoustic metasurfaces show great promise in various applications such as noise and vibration control, cloaking, and non-contact particle manipulation. The purpose of this review is to give a brief introduction to the capabilities of metasurfaces for reflection, absorption, and transmission. We will describe the underlying physics of wavefront control and show some intriguing examples of wave manipulation based on acoustic metasurfaces, such as focusing with a designed focal spot, perfect acoustic absorbers for low frequency sound, self-bending beams, vortex beams, and asymmetric acoustic transmission.
收稿日期:2017-08-23

基金资助

国家自然科学基金(批准号:11704284)、上海市浦江人才计划(批准号:17PJ1409000)资助项目

引用本文

[中文]
李勇. 声学超构表面[J]. 物理, 2017, 46(11): 721-730.
[英文]
LI Yong. Acoustic metasurfaces[J]. Physics, 2017, 46(11): 721-730.
使用本文
本文作者
阅读笔记
在左边选中内容后,点击→加入笔记。笔记内容将复制到下面文本框中,点击保存按钮可保存在个人文献中心中
              
[1]
Liu Z et al. Science,2000,289:1734
[2]
Fang N et al. Nat. Mater.,2006,5:452
[3]
Yang Z et al. Phys. Rev. Lett.,2008,101:204301
[4]
Liang Z,Li J. Phys. Rev. Lett.,2012,108:114301
[5]
Ma G,Sheng P. Sci. Adv.,2016,2:e1501595
[6]
Cummer S A et al. Nat. Rev. Mat.,2016,1:16001
[7]
Li Y et al. Sci. Rep.,2013,3:2546
[8]
Zhao J et al. Sci. Rep.,2013,3:2537
[9]
Xie Y et al. Nat. Commun.,2014,5:5553
[10]
Tang K et al. Sci. Rep.,2014,4:6517
[11]
Mei J,Wu Y. New J. Phys.,2014,16:123007
[12]
Li Y et al. Phys. Rev. Applied,2014,2:064002
[13]
Li Y et al. Phys. Rev. Applied,2015,4:024003
[14]
Li Y,Assouar M B. Sci. Rep.,2015,5:17612
[15]
Jiang X et al. Phys. Rev. Lett.,2016,117:034301
[16]
Li Y et al. New J. Phys.,2016,18:043024
[17]
Qi S et al. Phys. Rev. Applied,2017,7:054006
[18]
Li Y et al. Phys. Rev. Lett.,2017,119:035501
[19]
Ma G et al. Nat. Mater.,2014,13:873
[20]
Yu N et al. Science,2011,334:333
[21]
Li Y et al. Appl. Phys. Lett.,2012,101:233508
[22]
Li Y et al. Appl. Phys. Lett.,2013,103:053505
[23]
Li Y et al. Appl. Phys. Lett.,2013,103:063509
[24]
Zhu Y et al. Phys. Rev. X,2017,7:021034
[25]
Li Y,Assouar B M. Appl. Phys. Lett.,2016,108:063502
[26]
Maa D Y. J. Acoust. Soc. Am.,1998,104:2861
[27]
Zhu X et al. Nat. Commun.,2016,7:11731
[28]
Hefner B T,Marston P L. J. Acoust. Soc. Am.,1999,106:3313
[29]
Zhang L,Marston P L. Phys. Rev. E,2011,84:065601
[30]
Demore C E et al. Phys. Rev. Lett.,2012,108:194301
[31]
Marchiano R,Thomas J L. Phys. Rev. E,2005,71:066616
[32]
Shi C et al. Proc. Natl. Acad. Sci. U.S.A.,2017,114(28):7250
[33]
Jiang X et al. J. Acoust. Soc. Am.,2017,141:EL363
[34]
Ye L P et al. AIP Adv.,2016,6:085007
数据正在加载中...
中国物理学会期刊网