强非局域非线性介质中光束传输的Ince-Gauss解
Analytical solution in the Ince-Gaussian form of the beam propagating in the strong nonlocal media
-
摘要: 利用强非局域非线性介质中傍轴光束传输的线性模型(snyder-Mitchell模型)讨论了椭圆坐标系下光束传输过程,通过设立Ince多项式对Gauss函数的调制解得到了强非局域非线性介质中光束稳定传输的Ince-Gauss解.当Ince-Gauss光束的入射功率为临界功率时,光束保持孤子形式传输,否则传输光束的束宽呈现周期性波动,即为呼吸子形式.同时还数值模拟了呼吸子的传输过程.Ince-Gauss光在一定条件下可以连续转换为Hermite-Gauss光或Laguerre-Gauss光,图示展现了几个低阶Ince型光孤子及其转换情况.
-
关键词:
- 强非局域非线性介质 /
- Ince-Gauss光 /
- Laguerre-Gauss光 /
- Hermite-Gauss光
Abstract: Based on the Snyder-MitcheU model that describes the paraxial beam propagating in strongly nonlocal nonlinear media and by constituting the trial solution with modulating the Gaussian beam by Ince polynomials in elliptic coordinate, the close forms of Ince-Gaussian beams have been accessed. Depending on the power of the beam, the Ince-Gaussian beams can be either a soliton state when the input power is equal to the critical power or a breather state. The Ince-Gaussian beams constitute the exact and continuous transition modes between Hermite-Gaussian beams and Laguerre-Gaussian beams. The profiles of the breather at different propagating distance are numerically obtained and the transitions of a few Ince solitons are given. -
-
计量
- 文章访问数: 458
- HTML全文浏览数: 68
- PDF下载数: 0
- 施引文献: 0