经典轨道的封闭性和径向Schr?dinger方程的因式分解
Closeness of Classical Orbits and Factorization of Radial Schrodinger Equation
-
摘要: 研究表明,保证经典轨道具有封闭性的Bertrand定理可以进一步推广,在适当的角动量下,仍存在着非椭圆的闭合轨道.对于屏蔽Coulomb场,可获得广义Runge-Lenz矢量.这种轨道封闭性与径向Schr?dinger方程因式分解相对应.
-
关键词:
- Bertrand定理 /
- 闭合轨道 /
- 升降算子
Abstract: It is shown that for a particle with suitable angular momenta in the screened Coulomb poten-tial or isotropic harmonic potential, there still exists closed orbits rather than ellipse, characterized by theconserved perihelion and aphelion vectors, i.e. , extended Runge-Lenz vector, Which implies a higher dy-namical symmetry than the geometrical symmetry SO3. For the potential, factorization of the radialSchrodinger equation to produce raising and lowering operators is also pointed out. -
-
计量
- 文章访问数: 479
- HTML全文浏览数: 181
- PDF下载数: 19
- 施引文献: 0