摘要:
采用格子Boltzmann方法模拟了在热对流条件下的颗粒沉降问题,在研究单颗粒在等温流体、热流体和冷流体中运动的基础上,进一步模拟了两个不同温度的颗粒在流体中的沉降.结果表明:两等温颗粒的沉降方式与雷诺数Re以及格拉晓夫数Gr密切相关,而两不同温度的颗粒与两等温颗粒的沉降规律有显著不同.无论初始位置如何,冷颗粒最终总位于热颗粒下方运动, Re较大时,发生连续的拖曳、接触现象,而Re较小时,冷颗粒会以较大的沉降速度远离热颗粒.
Abstract:
@@@@We investigate numerically the sedimentations of solid particles in a fluid with different temperatures using a lattice Boltzmann method. The sedimentation processes of a single particle in an isothermal, hot, or cool fluid are first simulated, and then the sedimen-tations of two particles with different temperatures are carefully studied. It is found that the dynamics of the two particles with the same temperature is closely related to the Reynolds number and the Grashof number, while the process of two particles with different temperatures are different from that of two particles with the same temperature. The cold particle will eventually descend under the hot particle, and the drafting and kissing phenomenon occurs as Re is large, while the cold particle falls far from the hot one as Re is small.