不确定混沌系统的多项式函数模型补偿控制*
Compensation control on chaotic systems with uncertainties based on polynomial basis functions model*
-
摘要: 针对不确定混沌系统控制问题,研究了一种基于共轭梯度法(conjugate gradient algorithm, CGA)的多项式函数模型(polynomial-basis-functions model, PBFM)的补偿控制方法。该方法首先用 PBFM 对混沌系统的动力学特性进行拟合,然后用拟合好的 PBFM 模型对不确定混沌系统进行前馈补偿控制。该方法的特点是不需要被控混沌系统的数学模型,可以快速跟踪任意给定的参考信号。数值仿真试验表明了该方法不仅具有响应速度快、控制精度高,而且具有较强的抑制混沌系统参数摄动能力和抗干扰能力。Abstract: For the control of uncertainty chaos systems, a compensation control method using the polynomial-basis-functions model (PBFM) based on conjugate gradient algorithm (CGA) is studied. In the proposed method, dynamic properties of a chaotic system are first fitted by PBFM, and then feedforward compensation control for the uncertainty chaos system is implemented by using good fitting PBFM. The proposed approach can quickly track any given reference signal without the need of a mathematic model of chaos system. The numerical simulation results show that the proposed control method has not only the fast response speed and high control accuracy, but also a strong inhibitory ability to parameter perturbation and the anti-interference ability for the chaos system.
-
-
计量
- 文章访问数: 364
- HTML全文浏览数: 175
- PDF下载数: 0
- 施引文献: 0