基于高斯型脉冲的非线性Ramsey干涉
Nonlinear Ramsey interference with Gaussian pulse
-
摘要: 基于非线性Rosen-Zener隧穿理论,利用高斯型脉冲研究了双势阱玻色-爱因斯坦凝聚体的非线性Ramsey干涉。通过数值模拟得到了丰富的非线性Ramsey干涉图样,分别讨论了粒子间相互作用和高斯型脉冲的周期对干涉图样的影响。通过哈密顿正则关系得到了干涉条纹的基频表达式,并借助傅里叶变换对Ramsey干涉条纹的频率进行分析,得到了干涉条纹的基频随粒子间相互作用及脉冲周期的变化关系。比较数值和解析结果发现两者符合得很好。Abstract: According to the theory of nonlinear Rosen-Zener tunneling, we investigate the nonlinear Ramsey interference of Bose-Einstein condensate in a double-well potential with Gaussian pulse. Rich Ramsey fringes are shown by the numerical simulations. The influ-ences on the fringes of the atom-atom interaction and the period of Gaussian pulse are discussed. We obtain the analytical expression for the fundamental frequency of Ramsey fringes by using Hamilton equation. The relation of the frequency to the interaction strength and the Gaussian-pulse period is found by analyzing the fringes through Fourier transformation. The numerical simulations are consistent with our theoretical predictions.
-
-
计量
- 文章访问数: 428
- HTML全文浏览数: 231
- PDF下载数: 0
- 施引文献: 0