一种识别关联维数无标度区间的新方法?

上一篇

下一篇

周双, 冯勇, 吴文渊. 2015: 一种识别关联维数无标度区间的新方法?, 物理学报, null(13): 130504. doi: 10.7498/aps.64.130504
引用本文: 周双, 冯勇, 吴文渊. 2015: 一种识别关联维数无标度区间的新方法?, 物理学报, null(13): 130504. doi: 10.7498/aps.64.130504
Zhou Shuang, Feng Yong, Wu Wen-Yuan. 2015: A novel metho d to identify the scaling region of correlation dimension, Acta Physica Sinica, null(13): 130504. doi: 10.7498/aps.64.130504
Citation: Zhou Shuang, Feng Yong, Wu Wen-Yuan. 2015: A novel metho d to identify the scaling region of correlation dimension, Acta Physica Sinica, null(13): 130504. doi: 10.7498/aps.64.130504

一种识别关联维数无标度区间的新方法?

A novel metho d to identify the scaling region of correlation dimension

  • 摘要: 在计算关联维数过程中,为了减少人为因素识别无标度区间带来的误差,提出一种基于模拟退火遗传模糊C均值聚类识别无标度区间的新方法。该方法根据无标度区间对应曲线的二阶导数在零附近波动的变化特征,利用分类算法进行识别。首先对双对数关联积分的离散数据进行二阶差分;然后利用模拟退火遗传模糊C均值聚类方法对该数据进行分类,选出在零附近波动的数据;再剔除粗大误差保留有效数据;最后进行统计分析识别出线性度最好的作为无标度区间。应用新方法对两个著名的混沌系统Lorenz和Henon进行了仿真,计算结果与理论值非常符合。实验表明,所提出的新方法与主观识别、K-means和2-means方法比较,可以有效自动识别无标度区间,减少误差,计算结果更加精确。
  • 加载中
  • 加载中
计量
  • 文章访问数:  415
  • HTML全文浏览数:  68
  • PDF下载数:  0
  • 施引文献:  0
出版历程
  • 刊出日期:  2015-07-15

一种识别关联维数无标度区间的新方法?

  • 中国科学院重庆绿色智能技术研究院,自动推理与认知重庆市重点实验室,重庆 400714; 中国科学院大学,北京 100049
  • 中国科学院重庆绿色智能技术研究院,自动推理与认知重庆市重点实验室,重庆 400714

摘要: 在计算关联维数过程中,为了减少人为因素识别无标度区间带来的误差,提出一种基于模拟退火遗传模糊C均值聚类识别无标度区间的新方法。该方法根据无标度区间对应曲线的二阶导数在零附近波动的变化特征,利用分类算法进行识别。首先对双对数关联积分的离散数据进行二阶差分;然后利用模拟退火遗传模糊C均值聚类方法对该数据进行分类,选出在零附近波动的数据;再剔除粗大误差保留有效数据;最后进行统计分析识别出线性度最好的作为无标度区间。应用新方法对两个著名的混沌系统Lorenz和Henon进行了仿真,计算结果与理论值非常符合。实验表明,所提出的新方法与主观识别、K-means和2-means方法比较,可以有效自动识别无标度区间,减少误差,计算结果更加精确。

English Abstract

参考文献 (0)

目录

/

返回文章
返回