摘要:
本文讨论了分数阶对数耦合系统在非周期外力作用情况下,耦合粒子链的定向输运现象.由于粒子在黏性介质中的运动具有“记忆性”,所以本文通过将系统建模为分数阶对数耦合模型来研究各个系统参数对粒子链运动状态的影响.数值仿真表明:1)对于此类系统,只有在存在外力作用的情况下粒子链才能够产生定向输运现象,并且粒子链平均流速随着外力的增大而增大.2)对于分数阶阶数较小的系统,阻尼记忆性对粒子链的运动状态有显著的影响,具体表现为:粒子链的平均流速存在上界(这个上界非常小),无论外力、耦合力以及噪声强度如何变化,粒子链的平均流速都不会超过这个上界.当系统的阻尼力很大且外力为零时,粒子链不会产生定向输运现象.3)当系统的阶数与外力较大时,虽然粒子链能够产生定向流,但是此时系统对耦合力与噪声具有免疫性.4)耦合力与噪声强度对粒子链运动的影响只在外力较小的情况下有所表现.在这种情况下,当系统阶数充分大时,粒子链的平均流速随着耦合力与噪声强度的变化而变化,并且伴随着定向流的产生。
Abstract:
Using the fractional calculus theory, we investigate the directional transport phenomenon in a fractional logarithm coupled system under the action of a non-periodic external force. When a Brownian particle moves in the media with memory such as viscoelastic media, the system should be modeled as a nonlinear fractional logarithm coupled one. Using the method of fractional difference, we can solve the model numerically and discuss the influences of the various system parameters on the average transport velocity of the particles. Numerical results show that: 1) The directional transport phenomenon in this fractional logarithmic coupled model appears only when the external force exists, and the value of the average transport velocity of the particles increases with increasing external force. 2) When the fractional order of the system is small enough, the damping memory has a significant impact on the average transport velocity of the particles. Furthermore, the average transport velocity of the particles has an upper bound (although it is very small), no matter how the external force, coupled force and the intensity of noise change, the average transport velocity of the particles is no more than the upper bound. When there is no external force and the damping force is big enough, the directional transport phenomenon disappears. 3) When the fractional order of the system and the external force are big enough, although the directional transport phenomenon appears, the coupled force and the intensity of noise have no impact on the system. 4) Only when the external force is small enough, could the coupled force and noise intensity influence the average transport velocity of the particles. In this situation, the directional transport phenomenon appears when the fractional order of the system is big enough, and the average transport velocity of the particles changes along with the change of the coupled force and the noise intensity.