液态水中的多种局域结构
摘要: 对于液态水中的微观结构到底是均匀的还是由多种结构混合而成,这一问题的争论已经持续了一个多世纪。随着多种水的非晶体的发现以及计算机技术的进步,混合模型逐渐得到更多的关注。本文首先介绍在模拟和实验上验证液态水中存在多种微观结构的最新进展;然后使用主成分分析方法研究液态水的拉曼谱和四面体序分布,发现它们可以通过两个基本的函数线性叠加而得到,对应液态水中存在两种微观结构;最后介绍了使用二元溶液理论来解释水的一些热力学性质的工作,以及水的液液相变理论的进展。
Multiple typ es of lo cal structure in liquid water
Keywords:
- 液态水 /
- 多种微观结构 /
- 混合模型
Abstract: Nowadays, although our understanding on liquid water have lots of progresses due to the development of experi-mental tools and computer simulation techniques, the molecular level structure of water, its heterogeneity, is still elusive. In the end of the nineteenth century, R?ntgen proposed that the water is a mixture of two molecular complexes, which cannot be confirmed by experiments at that time. In the middle of the twentieth century, Bernal and his followers regarded the structure of liquid water as a random tetrahedral network, which was widely accepted by most scientists. With the development of computer science and the discovery of several amorphism, more and more attentions are paid on the mixture model of liquid water. In this paper, we firstly review some latest evidences about the multiple types of local structure in liquid water in both simulations and experiments. In all-atom simulation, the distributions of the local structure index obtained by minimizing the energy of samples are double peak at all temperatures. In experiment, the X-ray emission spectroscopy of liquid water at ambient pressure shows that there are two local structures in liquid water, one is order and ice-like, the other one is disorder and gas-like. Secondly, some results of our group on this topic are presented. We transformed the Raman spectra into the high-dimensional vectors and analyze the vectors with the principal component analysis method. The results show that all the end points of vectors are in a line in the high-dimensional space which implies that they can be obtained by linearly combining two basic points in that line. This means that the Raman spectra can be decomposed into two basic spectra. We also perform the same analysis on the distributions of tetrahedral order parameter in liquid water and obtained similar results. It is an obvious signal of the existence of multi-component in liquid water. Finally, we introduce the mixture model of liquid water which can be used to explain the thermodynamic properties of liquid water. In the mixture model, the form of the Gibbs free energy of liquid water is the same as the binary regular solution. The free energy is a function of the concentration of the disorder local structure. The anomalies of liquid water are directly caused by the change of concentration of the disorder local structure. In the low temperature and high pressure region, the mixture model has a critical point, which is consistent with the liquid-liquid phase transition theory.