小系统的非平衡统计力学与随机热力学
Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems
-
摘要: 热力学是一个古老的课题,古典热力学以宏观的具有大粒子数的系统为研究对象,自17世纪以来,科学家们构建了热力学的完备公理化体系。将热力学推广至小系统是近三十年来的研究前沿。文章介绍小系统的非平衡统计力学以及小系统的随机热力学。作为研究案例,利用时间依赖的谐振子势场控制单个粒子来构造随机热机的类卡诺循环,并发现该热机最大功率对应的效率等于1- Tc/Th ,其中Tc和Th分别对应于低温热库和高温热库的温度。
-
关键词:
- 小系统 /
- 涨落定理 /
- Jarzynski等式 /
- 随机热力学 /
- 随机热机
Abstract: Thermodynamics is an old subject. The research objects in conventional thermo-dynamics are macroscopic systems with huge number of particles. In recent 30 years, thermody-namics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1- Tc/Th , where Tc and Th are the temperatures of cold bath and hot bath, respectively. -
-
计量
- 文章访问数: 321
- HTML全文浏览数: 52
- PDF下载数: 0
- 施引文献: 0