Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法

上一篇

下一篇

娄捷. 2017: Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法, 物理, 46(7): 439-445. doi: 10.7693/wl20170705
引用本文: 娄捷. 2017: Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法, 物理, 46(7): 439-445. doi: 10.7693/wl20170705
LOU Jie. 2017: Combining the Grassmann algebra and tensor network:a new method to study strongly correlated fermionic systems, Physics, 46(7): 439-445. doi: 10.7693/wl20170705
Citation: LOU Jie. 2017: Combining the Grassmann algebra and tensor network:a new method to study strongly correlated fermionic systems, Physics, 46(7): 439-445. doi: 10.7693/wl20170705

Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法

    通讯作者: 娄捷

Combining the Grassmann algebra and tensor network:a new method to study strongly correlated fermionic systems

    Corresponding author: LOU Jie
  • 摘要: 文章介绍了把Grassmann代数与张量网络/张量矩阵乘积态类数值方法相结合所发展出的崭新的处理强关联费米/电子模型的严格数值模拟方法.该类方法普适、高效、严格,是具有广阔发展前景的研究手段.文章还介绍了GMERA(Grassmann multi-scale entanglement renormalization ansatz)方法的一些验证结果以及对t-J模型进行模拟的最新进展.
  • 加载中
  • 加载中
计量
  • 文章访问数:  175
  • HTML全文浏览数:  74
  • PDF下载数:  0
  • 施引文献:  0
出版历程
  • 刊出日期:  2017-07-12

Grassmann代数与张量网络——研究强关联费米模型的崭新数值方法

    通讯作者: 娄捷
  • 复旦大学物理系 上海 200433

摘要: 文章介绍了把Grassmann代数与张量网络/张量矩阵乘积态类数值方法相结合所发展出的崭新的处理强关联费米/电子模型的严格数值模拟方法.该类方法普适、高效、严格,是具有广阔发展前景的研究手段.文章还介绍了GMERA(Grassmann multi-scale entanglement renormalization ansatz)方法的一些验证结果以及对t-J模型进行模拟的最新进展.

English Abstract

参考文献 (0)

目录

/

返回文章
返回