量子传感(Ⅱ):关键技术与典型代表

上一篇

下一篇

郭弘, 吴腾, 罗斌, 刘院省. 2024: 量子传感(Ⅱ):关键技术与典型代表, 物理, 53(6): 384-394. doi: 10.7693/wl20240604
引用本文: 郭弘, 吴腾, 罗斌, 刘院省. 2024: 量子传感(Ⅱ):关键技术与典型代表, 物理, 53(6): 384-394. doi: 10.7693/wl20240604
GUO Hong, WU Teng, LUO Bin, LIU Yuan-Xing. 2024: Quantum sensing (Ⅱ):technologies and typical examples, Physics, 53(6): 384-394. doi: 10.7693/wl20240604
Citation: GUO Hong, WU Teng, LUO Bin, LIU Yuan-Xing. 2024: Quantum sensing (Ⅱ):technologies and typical examples, Physics, 53(6): 384-394. doi: 10.7693/wl20240604

量子传感(Ⅱ):关键技术与典型代表

    通讯作者: 郭弘, email:hongguo@pku.edu.cn

Quantum sensing (Ⅱ):technologies and typical examples

    Corresponding author: GUO Hong, email:hongguo@pku.edu.cn
  • 摘要: 作为量子信息感知物理实现基础的量子传感技术是三大核心量子技术之一,也是发展历史最悠久、技术成熟度最高、实际应用范围最广、潜在应用最多的量子技术。文章是量子传感综述论文的第二部分,在第一部分的基础上,介绍了量子传感的关键技术以及量子传感器的典型代表。其中,关键技术方面,结合量子态的制备、操控、探测,概括了量子传感具备颠覆性能力的核心原理及技术支撑;典型代表方面,详细介绍了频率、电、磁、重力、惯性等代表性量子传感器技术,以及各类量子传感器的基本原理、实现平台及发展现状。
  • 加载中
  • Degen C,Reinhard F,Cappellaro P. Reviews of Modern Physics, 2017,89:035002
    Raimond J M,Brune M,Haroche S. Reviews of Modern Physics, 2001,73:565
    Krantz P,Kjaergaard M,Yan F et al. Applied Physics Reviews, 2019,6:021318
    Aspelmeyer M,Kippenberg T J,Marquardt F. Reviews of Modern Physics,2014,86:1391
    Hu Y W,Xiao Y F,Liu Y C et al. Frontiers of Physics,2013,8: 475
    Index to Nuclear Science Wallchart. https://www2.lbl.gov/abc/wallchart/outline.html
    Appelt S,Amar Baranga A B,Erickson C J et al. Physical Review A,1998,58:1412
    Gentile T R,Nacher P J,Saam B et al. Reviews of Modern Physics,2017,89:045004
    Barker W A. Reviews of Modern Physics,1962,34:173
    Shi F Z,Zhang Q,Wang P F et al. Science,2015,347:1135
    Safronova M S,Porsev S G,Kozlov M G et al. Phys. Rev. Lett., 2018,121:213001
    Safronova M S. Nature Physics,2018,14:198
    Balabas M V,Jensen K,Wasilewski W et al. Optics Express, 2010,18:5825
    Seltzer S J,Romalis M V. Journal of Applied Physics,2009,106: 114905
    Su H W,Jiang M,Peng X H. Science China Information Sciences,2022,65:200501
    Koch H C,Bison G,Grujić Z D et al. The European Physical Journal D,2015,69:202
    Thielking J,Okhapkin M V,Glowacki P et al. Nature,2018, 556:321
    Riehle F. Nature Photonics,2017,11:25
    Jade M Y et al. Position,Navigation,and Timing Technologies in the 21st Century:Integrated Satellite Navigation,Sensor Systems,and Civil Applications. John Wiley & Sons,2021.p.1
    Jeffrey S S. Developments in Alkali-metal Atomic Magnetometry. Princeton University,2008(THESIS)
    Farooq M,Chupp T,Grange J et al. Phys. Rev. Lett.,2020,124: 223001
    Gilles H,Hamel J,Cheron B. Review of Scientific Instruments, 2001,72:2253
    Wu T,Peng X,Lin Z et al. Review of Scientific Instruments, 2015,86:103105
    Doherty M W,Manson N B,Delaney P et al. Physics Reports, 2013,528:1
    Urghoff M,Gemmel C,Heil W et al. Journal of Physics:Conference Series,2011,295:012017
    Budker D,Kozlov M G. Optical Memory and Neural Networks, 2024,32:S409
    Sheng D,Li S,Dural N et al. Phys. Rev. Lett.,2013,110:160802
    Liu Y,Peng X,Wang H et al. Optics Letters,2022,47:5252
    Balabas M V,Karaulanov T,Ledbetter M P et al. Phys. Rev. Lett.,2010,105:070801
    Li W,Balabas M,Peng X et al. Journal of Applied Physics, 2017,121:063104
    Allred J,Lyman R N,Kornack T W et al. Phys. Rev. Lett.,2002, 89:130801
    Crossley D,Hinderer J,Riccardi U. Reports on Progress in Physics,2013,76:046101
    Poli N,Wang F,Tarallo M et al. Phys. Rev. Lett.,2011,106: 038501
    Momenzadeh S A,Stohr R J,Oliveira D et al. Nano Letters, 2015,15:165
    Jensen K,Leefer N,Jarmola A et al. Phys. Rev. Lett.,2014,112: 160802
    Xie Y,Yu H,Zhu Y et al. Science Bulletin,2021,66:127
    Chen X,Zou C,Gong Z et al. Light:Science & Applications, 2015,4:e230
    Maletinsky P,Hong S,Grinolds M et al. Nature Nanotechnology,2012,7:320
    Schirhagl R,Chang K,Loretz M et al. Annual Review of Physical Chemistry,2014,65:83
    Lovchinsky I et al. Science,2016,351:836
    Albrecht R,Bommer A,Deutsch C et al. Phys. Rev. Lett.,2013, 110:243602
    Wang J F,Liu L,Liu X D et al. Nature Materials,2023,22:489
    Yuan J,Yang W,Jing M et al. Reports on Progress in Physics, 2023,86:106001
    Gustavson T L,Landragin A,Kasevich M A. Classical and Quantum Gravity,2000,17:2385
    Zhang Y,Li J J,Jiang Q Y et al. Journal of Magnetic Resonance, 2022,344:107295
    Kornack T W,Ghosh R K,Romalis M V. Phys. Rev. Lett.,2005, 95:230801
    Saywell J C et al. Nature Communications,2023,14:7626
    Soshenko V V,Bolshedvorskii S V,Rubinas O et al. Phys. Rev. Lett.,2021,126:197702
    Jarmola A et al. Science Advances,2021,7:eabl3840
  • 加载中
计量
  • 文章访问数:  349
  • HTML全文浏览数:  349
  • PDF下载数:  11
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-05-18

量子传感(Ⅱ):关键技术与典型代表

    通讯作者: 郭弘, email:hongguo@pku.edu.cn
  • 1 北京大学电子学院 量子信息技术中心 北京 100871;
  • 2 北京邮电大学电子工程学院 信息光子学与光通信全国重点实验室 北京 100876;
  • 3 北京航天控制仪器研究所 北京 100094

摘要: 作为量子信息感知物理实现基础的量子传感技术是三大核心量子技术之一,也是发展历史最悠久、技术成熟度最高、实际应用范围最广、潜在应用最多的量子技术。文章是量子传感综述论文的第二部分,在第一部分的基础上,介绍了量子传感的关键技术以及量子传感器的典型代表。其中,关键技术方面,结合量子态的制备、操控、探测,概括了量子传感具备颠覆性能力的核心原理及技术支撑;典型代表方面,详细介绍了频率、电、磁、重力、惯性等代表性量子传感器技术,以及各类量子传感器的基本原理、实现平台及发展现状。

English Abstract

参考文献 (50)

目录

/

返回文章
返回