半经典响应理论

上一篇

下一篇

牛谦, 高阳, 肖聪. 2024: 半经典响应理论, 物理, 53(7): 460-471. doi: 10.7693/wl20240704
引用本文: 牛谦, 高阳, 肖聪. 2024: 半经典响应理论, 物理, 53(7): 460-471. doi: 10.7693/wl20240704
NIU Qian, GAO Yang, XIAO Cong. 2024: Semiclassical response theory, Physics, 53(7): 460-471. doi: 10.7693/wl20240704
Citation: NIU Qian, GAO Yang, XIAO Cong. 2024: Semiclassical response theory, Physics, 53(7): 460-471. doi: 10.7693/wl20240704

半经典响应理论

Semiclassical response theory

    Corresponding authors: NIU Qian, email:niuqian@ustc.edu.cn ;  GAO Yang, email:ygao87@ustc.edu.cn
  • 摘要: 对电子响应性质的研究,如平衡态下的磁化率和非平衡态下的输运系数等,是早期固体理论发展的原初动力之一。当朴素的经典粒子观经由量子力学原理和多体作用的锤炼升华至半经典粒子观后,进一步辅以对几何相位和拓扑性的深刻认识,人们终获得理解响应性质的完善、准确、颇具物理直观性的半经典理论框架。文章将介绍基于现代的电子粒子观和几何相位的半经典响应理论这一基本框架,并摘选热电响应、自旋输运、非线性响应、外禀机制这四个重要研究方向中的一些代表性问题,来解释半经典响应理论的内涵并展示其在固体物理研究中的价值。
  • 加载中
  • Lorentz H A. Proc. R. Acad. Amst.,1905,7:438,585,684
    Sommerfeld A. Naturwissenschaften,1927,15:825
    Sommerfeld A. Z. Phys.,1928,47:43
    Bloch F. Z. Phys.,1928,52:555
    Chang M C,Niu Q. Phys. Rev. B,1996,53:7010
    Sundaram G,Niu Q. Phys. Rev. B,1999,59:14915
    Xiao D,Shi J,Niu Q. Phys. Rev. Lett.,2005,95:137204
    Jungwirth T,Niu Q,MacDonald A H. Phys. Rev. Lett.,2002,88: 207208
    Onoda M,Nagaosa N. J. Phys. Soc. Jpn.,2002,71:19
    Yao Y,Kleinman L,MacDonald A H et al. Phys. Rev. Lett., 2004,92:037204
    Karplus R,Luttinger J M. Phys. Rev.,1954,95:1154
    Smit J. Physica (Utrecht),1955,21:877; 1958,24:39
    Luttinger J M. Phys. Rev.,1958,112:739
    Sinitsyn N A. J. Phys.:Condens. Matter,2008,20:023201
    Berger L. Phys. Rev. B,1970,2:4559
    King-Smith R D,Vanderbilt D. Phys. Rev. B,1993,47:1651
    Resta R. Rev. Mod. Phys.,1994,66:899
    Resta R,Vanderbilt D. Physics of Ferroelectrics:A Modern Perspective. Berlin:Springer-Verlag,2007. p.31
    Thouless D J. Phys. Rev. B,1983,27:6083
    Nagaosa N,Tokura Y. Nat. Nanotechnol.,2013,8:899
    Yang S A,Beach G S D,Knutson C et al. Phys. Rev. Lett.,2009, 102:067201
    Yang S A,Beach G S D,Knutson C et al. Phys. Rev. B,2010, 82:054410
    Xiong B,Chen H,Li X et al. Phys. Rev. B,2018,98:035123
    Xiao C,Xiong B,Niu Q. Phys. Rev. B,2021,104:064433
    Xiao D,Shi J,Clougherty D P et al. Phys. Rev. Lett.,2009,102: 087602
    Zhao Y,Gao Y,Xiao D. Phys. Rev. B,2021,104:144203
    Hirst L L. Rev. Mod. Phys.,1997,69:607
    Cooper N R,Halperin B I,Ruzin I M. Phys. Rev. B,1997,55: 2344
    Xiao D,Yao Y,Fang Z et al. Phys. Rev. Lett.,2006,97:026603
    Matsumoto R,Murakami S. Phys. Rev. Lett.,2011,106:197202
    Luttinger J M. Phys. Rev.,1964,135:A1505
    Qin T,Niu Q,Shi J. Phys. Rev. Lett.,2011,107:236601
    Zhang L. New J. Phys.,2016,18:103039
    Xiao C,Niu Q. Phys. Rev. B,2020,101:235430
    Culcer D,Sinova J,Sinitsyn N A et al. Phys. Rev. Lett.,2004, 93:046602
    Dong L,Xiao C,Xiong B et al. Phys. Rev. Lett.,2020,124: 066601
    Hirsch J E. Phys. Rev. Lett.,1999,83:1834
    Murakami S,Nagaosa N,Zhang S C. Science,2003,301:1348
    Sinova J,Culcer D,Niu Q et al. Phys. Rev. Lett.,2004,92: 126603
    Sinova J,Valenzuela S O,Wunderlich J et al. Rev. Mod. Phys., 2015,87:1213
    Sun Q F,Xie X C. Phys. Rev. B,2005,72:245305
    Culcer D,Niu Q. Phys. Rev. B,2006,74:035209
    Shi J,Zhang P,Xiao D et al. Phys. Rev. Lett.,2006,96:076604
    Xiao C,Niu Q. Phys. Rev. B,2021,104:L241411
    Pan H,Liu Z,Hou D et al. Phys. Rev. Res.,2024,6:L012034
    Gao Y,Yang S A,Niu Q. Phys. Rev. Lett.,2014,112:166601
    Gao Y,Yang S A,Niu Q. Phys. Rev. B,2015,91:214405
    Wilczek F. Phys. Rev. Lett.,1987,58:1799
    Fu L,Kane C L,Mele E J. Phys. Rev. Lett.,2007,98:106803
    Qi X L,Hughes T L,Zhang S C. Phys. Rev. B,2008,78:195424
    Essin AM,Moore J E,Vanderbilt D. Phys. Rev. Lett.,2009,102: 146805
    Essin A M,Turner A M,Moore J E et al. Phys. Rev. B,2010,81: 205104
    Gao Y. Front. Phys.,2019,14:33404
    Duff A H,Lau A,Sipe J E. Phys. Rev. B,2023,108:235206
    Sodemann I,Fu L. Phys. Rev. Lett.,2015,115:216806
    Ma Q et al. Nature,2019,565:337
    Kang K,Li T,Sohn E et al. Nat. Mat.,2019,18:324
    Kumar D,Hsu C H,Sharma R et al. Nat. Nanotechnol.,2021, 16:421
    Sinha S et al. Nature Physics,2022,18:765
    He P,Koon G K W,Isobe H et al. Nat. Nanotechnol.,2022,17: 378
    Duan J,Jian Y,Gao Y et al. Phys. Rev. Lett.,2022,129:186801
    Ye X G,Liu H,Zhu P F et al. Phys. Rev. Lett.,2023,130: 016301
    Gao A et al. Science,2023,381:181
    Wang N et al. Nature,2023,621:487
    Du Z Z,Wang C M,Li S et al. Nat. Commun.,2019,10:3047
    Shao D F,Zhang S H,Gurung G et al. Phys. Rev. Lett.,2020, 124:067203
    Isobe H,Xu S Y,Fu L. Sci. Adv.,2020,6:2497
    Du Z Z,Lu H Z,Xie X. Nat. Rev. Phys.,2021,3:744
    Wang C,Gao Y,Xiao D. Phys. Rev. Lett.,2021,127:277201
    Liu H,Zhao J,Huang Y X et al. Phys. Rev. Lett.,2021,127: 277202
    Chen W,Gu M,Li J et al. Phys. Rev. Lett.,2022,129:276601
    Wang J,Zeng H,Duan W et al. Phys. Rev. Lett.,2023,131: 056401
    Das K,Lahiri S,Atencia R B et al. Phys. Rev. B,2023,108: L201405
    Kaplan D,Holder T,Yan B. Phys. Rev. Lett.,2024,132:026301
    Son D T,Spivak B Z. Phys. Rev. B,2013,88:104412
    Gao Y,Yang S A,Niu Q. Phys. Rev. B,2017,95:165135
    Goswami P,Pixley J H,Das Sarma S. Phys. Rev. B,2015,92: 075205
    Dai X,Du Z Z,Lu H Z. Phys. Rev. Lett.,2017,119:166601
    Xiao C,Ren Y,Xiong B. Phys. Rev. B,2021,103:115432
    Sinitsyn N A,Niu Q,Sinova J et al. Phys. Rev. B,2005,72: 045346
    Sinitsyn N A,Niu Q,MacDonald A H. Phys. Rev. B,2006,73: 075318
    Sinitsyn N A,MacDonald A H,Jungwirth T et al. Phys. Rev. B, 2007,75:045315
    Kohn W,Luttinger J M. Phys. Rev.,1957,108:590
    Nagaosa N,Sinova J,Onoda S et al. Rev. Mod. Phys.,2010,87: 1539
    Yang S A,Pan H,Yao Y et al. Phys. Rev. B,2011,83:125122
    Tian Y,Ye L,Jin X. Phys. Rev. Lett.,2009,103:087206
    Hou D,Su G,Tian Y et al. Phys. Rev. Lett.,2015,114:217203
    D’Yakonov M,Perel V. J. Exp. Theor. Phys. Lett.,1971,13: 3023
    Burkov A A,Núñez A S,MacDonald A H. Phys. Rev. B,2004, 70:155308
    Mishchenko E G,Shytov A V,Halperin B I. Phys. Rev. Lett., 2004,93:226602
    Chang M C,Niu Q. J. Phys.:Condens. Matter,2008,20:193202
    Xiao D,Chang M C,Niu Q. Rev. Mod. Phys.,2010,82:1959
    Xiao C,Liu Y,Xie M et al. Phys. Rev. B,2019,99:245418
    Xiao C,Liu Y,Yuan Z et al. Phys. Rev. B,2019,100:085425
    Xiao C,Zhou H,Niu Q. Phys. Rev. B,2019,100:161403(R)
    Xiao C,Niu Q. Phys. Rev. B,2017,96:045428
  • 加载中
计量
  • 文章访问数:  320
  • HTML全文浏览数:  320
  • PDF下载数:  18
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-06-26

半经典响应理论

摘要: 对电子响应性质的研究,如平衡态下的磁化率和非平衡态下的输运系数等,是早期固体理论发展的原初动力之一。当朴素的经典粒子观经由量子力学原理和多体作用的锤炼升华至半经典粒子观后,进一步辅以对几何相位和拓扑性的深刻认识,人们终获得理解响应性质的完善、准确、颇具物理直观性的半经典理论框架。文章将介绍基于现代的电子粒子观和几何相位的半经典响应理论这一基本框架,并摘选热电响应、自旋输运、非线性响应、外禀机制这四个重要研究方向中的一些代表性问题,来解释半经典响应理论的内涵并展示其在固体物理研究中的价值。

English Abstract

参考文献 (96)

目录

/

返回文章
返回