高温超导薄膜与超导机理研究

上一篇

下一篇

陈卓昱, 黄浩亮. 2024: 高温超导薄膜与超导机理研究, 物理, 53(8): 541-550. doi: 10.7693/wl20240806
引用本文: 陈卓昱, 黄浩亮. 2024: 高温超导薄膜与超导机理研究, 物理, 53(8): 541-550. doi: 10.7693/wl20240806
CHEN Zhuo-Yu, HUANG Hao-Liang. 2024: High-temperature superconducting thin films and the mechanism of superconductivity, Physics, 53(8): 541-550. doi: 10.7693/wl20240806
Citation: CHEN Zhuo-Yu, HUANG Hao-Liang. 2024: High-temperature superconducting thin films and the mechanism of superconductivity, Physics, 53(8): 541-550. doi: 10.7693/wl20240806

高温超导薄膜与超导机理研究

    通讯作者: 陈卓昱, email:chenzhuoyu@sustech.edu.cn

High-temperature superconducting thin films and the mechanism of superconductivity

    Corresponding author: CHEN Zhuo-Yu, email:chenzhuoyu@sustech.edu.cn
  • 摘要: 高温超导体的晶格结构通常呈现出层状特征,因此具有低维属性的外延薄膜与异质结构成为了探索高温超导机理的关键材料平台。近年来,原子级精准的外延生长技术更促进了新型超导体的发现。文章将按照超导体系维度下降的脉络,简要介绍高温超导薄膜和异质结构研究对深入理解超导机理的独特贡献。
  • 加载中
  • Bardeen J,Cooper L N,Schrieffer J R. Phys. Rev.,1957,108: 1175
    McMillan W L. Phys. Rev.,1968,167:331
    Bednorz J G,Müller K A. Z Physik B-Condensed Matter,1986, 64:189
    Zhao Z X,Chen L Q,Yang Q S et al. Science Bulletin,1987,32: 412
    Chu C W,Hor P H,Meng R L et al. Phys. Rev. Lett.,1987,58: 908
    Schilling A,Cantoni M,Guo J D et al. Nature,1993,363:56
    Kamihara Y,Watanabe T,Hirano M et al. J. Am. Chem. Soc., 2008,130:3296
    Chen X,Wu T,Wu G et al. Nature,2008,453:761
    Ren Z A,Lu W,Yang J et al. Chin. Phys. Lett.,2008,25:2215
    Fernandes R M,Coldea A I,Ding H et al. Nature,2022,601:35
    Li D,Lee K,Wang B Y et al. Nature,2019,572:624
    Sun H,Huo M,Hu X et al. Nature,2023,621:493
    Keimer B,Kivelson S A,Norman M R et al. Nature,2015,518: 179
    Chu C W,Deng L Z,Lv B. Physica C,2015,514:290
    Shal'nikov A. Nature,1938,142:74
    Eckstein J N,Bozovic I,von Dessonneck K E et al. Appl. Phys. Lett.,1990,57:931
    Ohtomo A,Hwang H Y. Nature,2004,427:423
    Reyren N,Thiel S,Caviglia A D et al. Science,2007,317:1196
    Gozar A,Logvenov G,Kourkoutis L et al. Nature,2008,455:782
    Wang Q Y,Li Z,Zhang W H et al. Chin. Phys. Lett.,2012,29: 037402
    Hwang H,Iwasa Y,Kawasaki M et al. Nature Mater.,2012,11:103
    Liu Y,Wang Z Q,Zhang X F et al. Phys. Rev. X,2018,8: 021002
    Saito Y,Nojima T,Iwasa Y. Nat. Rev. Mater.,2017,2:16094
    Schlom D G,Chen L Q,Fennie C J et al. MRS Bulletin,2014, 39:118
    Schlom D G,Chen L Q,Pan X Q et al. Journal of the American Ceramic Society,2008,91:2429
    MacManus-Driscoll J L,Wells M P,Yun C et al. APL Materials, 2020,8:040904
    Arthur J R. J. Appl. Phys.,1968,39:4032
    Guo Y,Zhang Y F,Bao X Y et al. Science,2004,306:1915
    Zhang T,Cheng P,Li W J et al. Nature Phys.,2010,6:104
    Song C L,Wang Y L,Cheng P et al. Science,2011,332:1410
    Betts R,Pitt C. Electron. Lett.,1985,21:960
    Božović I,He X,Wu J et al. Nature,2016,536:309
    Wei H I,Adamo C,Nowadnick E A et al. Phys. Rev. Lett.,2016, 117:147002
    Zhong Y,Chen Z Y,Chen S D et al. PNAS,2022,119: e2204630119
    Gu Q,Li Y,Wan S et al. Nat. Commun.,2020,11:6027
    Smith H M,Turner A F. Appl. Opt.,1965,4:147
    Schwarz H,Tourtellotte H A. J. Vac. Sci. Technol.,1969,6:373
    Dijkkamp D,Venkatesan T,Wu X D et al. Appl. Phys. Lett., 1987,51:619
    Zhu J,Zhao Y,Chen S et al. Materials Today Communications, 2022,31:103721
    Xie W,Wei B,Yao Z J. Supercond. Nov. Magn.,2020,33:1927
    Greenberg A,Cheng J L,Francis A et al. IEEE Transactions on Applied Superconductivity,2024,34:1
    Hsu F C,Luo J Y,Yeh K W et al. PNAS,2008,105:14262
    Wen C H,Xu H C,Chen C et al. Nat. Commun.,2016,7:10840
    Wang Z,Zou C,Lin C et al. Science,2023,381:227
    Siegrist T et al. Nature,1988,334:231
    Smith M G,Manthiram A,Zhou J et al. Nature,1991,351:549
    Azuma M,Hiroi Z,Takano M et al. Nature,1992,352:779
    Krockenberger Y et al. J. Appl. Phys.,2018,124:073905
    Li X M,Kawai T. Physica C,1994,229:251
    Kubo K,Yamauchi H. Phys. Rev. B,1994,49:1289
    Yakabe H,Kume A,Wen J G et al. Physica C,1994,232:371
    Krockenberger Y et al. Applied Physics Express,2012,5:043101
    Armitage N P et al. Rev. Mod. Phys.,2010,82:2421
    Karimoto S et al. Imai T. Appl. Phys. Lett.,2001,79:2767
    Harter J W et al. Phys. Rev. Lett.,2012,109:267001
    Fan J Q et al. National Science Review,2022,9:nwab225
    Norman M R. Rep. Prog. Phys.,2016,79:074502
    Anisimov V I et al. Phys. Rev. B,1999,59:7901
    Crespin M et al. Chem. Soc. Faraday Trans.,1983,79:1181
    Chaloupka J,Khaliullin G. Phys. Rev. Lett.,2008,100:016404
    Zhang J et al. Nat. Phys.,2017,13:864.
    Wang B Y,Li D,Goodge B H et al. Nature Phys.,2021,17:473
    Wei W,Sun W,Sun Y et al. Phys. Rev. B,2023,107:L220503
    Ji H,Liu Y,Li Y et al. Nat. Commun.,2023,14:7155
    Sun W J,Jiang Z C,Xia C L et al. 2024,arXiv:2403.07344
    Ding X,Fan Y,Wang X X et al. NSR,2024,11:nwae194
    Zeng S et al. Phys. Rev. Lett.,2020,125:147003
    Li D,Wang B Y,Lee K et al. Phys. Rev. Lett.,2020,125:027001
    Zeng S,Li C,Chow L et al. Sci. Adv.,2022,8:eabl9927
    Lee K,Wang B Y,Osada M et al. Nature,2023,619:288
    Wei W Z,Vu D,Zhang Z et al. Sci. Adv.,2023,9:eadh3327
    Li D F. Sci. Sin-Phys. Mech. Astron.,2021,51:047405
    Li Q,Wen H H. Physics,2022,51:633
    Gu Q,Wen H H. The Innovation,2022,3:100202
    Hepting M,Li D,Jia C J et al. Nat. Mater.,2020,19:381
    Lu H,Rossi M,Nag A et al. Science,2021,373(6551):213
    Chen Z,Osada M,Li D et al. Matter,2022,5:1806
    Sun W J et al. Adv. Mater.,2023,35:202303400
    Ding X,Tam C C,Sui X et al. Nature,2023,615:50
    Cheng B et al. Nat Mater.,2024,23:775
    Jiang D,Hu T,You L et al. Nat. Commun.,2014,5:5708
    Yu Y,Ma L,Cai P et al. Nature,2019,575:156
    Caviglia A,Gariglio S,Reyren N et al. Nature,2008,456:624
    Chen Z et al. Nat. Commun.,2018,9(1):4008
    Logvenov G,Gozar A,Bozovic I. Science,2009,326:699
    Castro D D,Salvato M,Tebano A et al. Phys. Rev. B,2012,86: 134524
    Castro D D et al. Phys. Rev. Lett.,2015,115:147001
    Balestrino G et al. Phys. Rev. B,1998,58:R8925(R)
    He S,He J,Zhang W et al. Nature Materials,2013,12:605
    Tan S,Zhang Y,Xia M et al. Nature Materials,2013,12:634
    Lee J J,Schmitt F T,Moore R G et al. Nature,2014,515:245
    Zhang C,Liu Z,Chen Z et al. Nat. Commun.,2017,8,14468
    Song Q,Yu T L,Lou X et al. Nat. Commun.,2019,10:758
    Jia T,Chen Z,Rebec S N et al. Adv. Sci.,2021,8(9):2003454
    Xu Y,Rong H,Wang Q et al. Nat. Commun.,2021,12:2840
    Zhang W H et al. Chin. Phys. Lett.,2014,31:017401
    Lee D H. Annu. Rev. Condens. Matter. Phys.,2018,9:261
    Jiao X et al. National Science Review,2024,11:nwad213
    Faeth B D et al. Phys. Rev. X,2021,11:021054
    Voit J. Rep. Prog. Phys.,1995,58:977
    Jiang S et al. PNAS,2021,118:e2109978118
    White S R. Phys. Rev. Lett.,1992,69:2863
    Ami T et al. Phys. Rev. B,1995,51:5994
    Kim C et al. Phys. Rev. Lett.,1996,77:4054
    Schlappa J,Wohlfeld K,Zhou K et al. Nature,2012,485:82
    Chen Z Y,Wang Y,Rebec S N et al. Science,2021,373:1235
    Samal D et al. Phys. Rev. Lett.,2013,111:096102
    Zech D,Keller H,Conder K. Nature,1994,371:681
    Gweon G H et al. Nature,2004,430:187
    Weyeneth S et al. Supercond. Nov. Magn.,2011,24:1235
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览数:  91
  • PDF下载数:  6
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-05-06

高温超导薄膜与超导机理研究

    通讯作者: 陈卓昱, email:chenzhuoyu@sustech.edu.cn
  • 1 南方科技大学物理系 深圳 518055;
  • 2 粤港澳大湾区量子科学中心 深圳 518045

摘要: 高温超导体的晶格结构通常呈现出层状特征,因此具有低维属性的外延薄膜与异质结构成为了探索高温超导机理的关键材料平台。近年来,原子级精准的外延生长技术更促进了新型超导体的发现。文章将按照超导体系维度下降的脉络,简要介绍高温超导薄膜和异质结构研究对深入理解超导机理的独特贡献。

English Abstract

参考文献 (110)

目录

/

返回文章
返回