实现室温超导的可行性路径探讨

上一篇

下一篇

罗会仟. 2025: 实现室温超导的可行性路径探讨, 物理, 54(4): 223-236. doi: 10.7693/wl20250401
引用本文: 罗会仟. 2025: 实现室温超导的可行性路径探讨, 物理, 54(4): 223-236. doi: 10.7693/wl20250401
LUO Hui-Qian. 2025: Possible paths to room temperature superconductivity, Physics, 54(4): 223-236. doi: 10.7693/wl20250401
Citation: LUO Hui-Qian. 2025: Possible paths to room temperature superconductivity, Physics, 54(4): 223-236. doi: 10.7693/wl20250401

实现室温超导的可行性路径探讨

    通讯作者: 罗会仟,email:hqluo@iphy.ac.cn

Possible paths to room temperature superconductivity

    Corresponding author: LUO Hui-Qian, hqluo@iphy.ac.cn
  • 摘要: 室温超导作为物理学皇冠上的明珠之一,吸引了众多科学家的持续关注和不懈努力。近年来,关于室温超导的报道既屡见不鲜亦充满争议,反映了人们对实现室温超导的热切期待。文章介绍了超导现象的基本特征、判定方法和典型材料,总结了“室温超导”相关的多起乌龙事件背后的经验教训。作者依据个人经验,提出了实现室温超导的10条可行性科学路径;最后表达了对室温超导的一些理性思考。作者认为,随着各类超导材料的不断涌现,室温超导的时代必将加速到来。但面对室温超导要保持谨慎乐观的态度,认真审视每一个科学判据,发掘可能的实用化价值,实现科学意义上的重大突破。
  • 加载中
  • 章立源. 超越自由:神奇的超导体. 北京:科学出版社,2005
    张裕恒. 超导物理. 合肥:中国科学技术大学出版社,1997
    Tinkham M. Introduction to Superconductivity. New York:Dover Publications,1996
    Higgs P W. Phys. Rev. Lett.,1964,13(16):508
    罗会仟. 超导“小时代”——超导的前世、今生和未来. 北京:清华大学出版社,2022
    Onnes H K. Commun. Phys. Lab. Univ. Leiden,1913:133d
    Meissner W,Ochsenfeld R. Naturwissenschaften,1933,21:787
    Ginzburg V L,Landau L D. Sov. Phys. JETP,1950,20:1064
    Bardeen J,Cooper L N,Schrieffer J R. Phys. Rev.,1957,106(1):162
    Bardeen J,Cooper L N,Schrieffer J R. Phys. Rev.,1957,108(5):1175
    罗会仟,周兴江. 现代物理知识,2012,24(2):30
    罗会仟. 现代物理知识,2024,36(4):46
    闻海虎. 物理,2006,35(01):16
    闻海虎. 物理,2006,35(02):111
    Schrieffer J R,Brooks J S. Handbook of High-Temperature Superconductivity. Springer,2007
    Matthias B T et al. Proc. Natl. Acad. Sci. USA,1977,74(4):1334
    Sun H et al. Nature,2023,621:493
    王猛. 物理,2023. 52(10):663
    Gu Q,Wen H H. The Innovation,2022,3(1):100202
    Drozdov A P et al. Nature,2015,525:73
    Drozdov A P et al. Nature,2019,569:528
    单鹏飞,王宁宁,孙建平等. 物理,2021,50:217
    孙莹,刘寒雨,马琰铭. 物理学报,2021,70:017407
    Zhong X,Tse J S,Hemley R J et al. The Innovation,2022,3: 100226
    Luo H. The Innovation Materials,2024,2(5):100105
    Schilling A et al. Nature,1993,363:56
    罗会仟. 物理,2018,47(9):592
    Bednorz J G,Müller K A. Z. Phys. B,1986,64:189
    Stewart G R. Physica C,2015,514:28
    赵忠贤等. 科学通报,1987,32:412
    Wu M K et al. Phys. Rev. Lett.,1987,58:908
    Narayan J et al. Appl. Phys. Lett.,1987,51:940
    Taylor K N R et al. J. Crystal Growth,1987,85:628
    Wu P T,Liu R S,Sung H M et al. MRS Online Proceedings Library,1987,99:623
    Novac A,Nguyen V V,Fischer E et al. Mater. Sci. Engin.,1995, B34:147
    Tolpygo S K. Morozovskii A E. Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki,1990,52(10):1096
    Lee S et al. 2023,arXiv:2307.12008
    Lee S et al. 2023,arXiv:2307.12037
    Wu H,Yang L,Xiao B et al. 2023,arXiv:2308.01516
    Kumar K,Karn N K,Awana V P S. Supercond. Sci. Technol., 2023,36:10LT02
    Zhu S,Wu W,Li Z et al. Matter,2023,6:4401
    Liu C et al. Phys. Rev. Materials,2023,7:084804
    Heeger A J et al. Rev. Mod. Phys.,1988,60:781
    Physicist Found Guilty of Misconduct. https://www.nature.com/articles/news020923-9
    Wigner E,Huntington H B. J. Chem. Phys.,1935,3:764
    Dias R P,Silvera I F. Science,2017,355:715
    Snider E et al. Retracted Article. Nature,2020,586:373
    Snider E et al. Retracted Article. Phys. Rev. Lett.,2021,126: 117003
    Dasenbrock-Gammon N et al. Retracted Article. Nature,2023, 615:244
    Superconductivity Scandal: the Inside Story of Deception in a Rising Star’s Physics Lab. https://www.nature.com/articles/d41586-024-00716-2
    Semenok D V et al. 2024,arXiv:2408.07477
    Song Y et al. Phys. Rev. Lett.,2023,130:266001
    Zhang Z et al. Phys. Rev. Lett.,2022,128:047001
    He Y et al. Phys. Chem. Chem. Phys.,2024,25:21037
    Stewart G R. Adv. in Phys.,2017,66:75
    向涛. d波超导体. 北京:科学出版社,2007
    李泽众,洪文山,谢涛等. 物理学报,2025,74(1):017401
    Pereiro J et al. Physics Express,2011,1:208
    Ohtomo A,Hwang H Y. Nature,2004,427:423
    Liu X et al. J. Phys.:Condens. Matter.,2015,27:183201
    Peng R et al. Nat. Commun.,2014,5:5044
    Liu C et al. Science,2021,371:716
    Jiang X et al. Nature Physics,2023,19:365
    Cui Y et al. Science Bulletin,2018,63:11
    Cao Y et al. Nature,2018,556:43
    Yi H et al. Science,2024,383:634
    Physicists create tunable superconductivity in twisted graphene “nanosandwich”. https://news.mit.edu/2021/physicists-create-tunablesuperconductivity-twisted-graphene-nanosandwich-0201
    Guo Y et al. Nature,2025,637:839
    Yu Y et al. Nature,2019,575:156
    Xu G,Zhu C,Gao G. Small,2022,18(44):2203140
    Takada K et al. Nature,2003,422:53
    Deguchi K et al. Supercond. Sci. Technol.,2011,24:055008
    Shi M Z et al. Phys. Rev. Mater.,2018,2:074801
    Shi M Z et al. New J. Phys.,2018,20:123007
    Schöneich M,Johrendt D. Zeitschrift anorg allge chemie,2024, 650:e202400155
    Sun L,Cava R J. Phys. Rev. Materials,2019,3:090301
    Kamiya K et al. Nature Commun.,2018,9:154
    Zhang X et al. Commun. Phys.,2022,5:282
    The Crystal Ball of AI: DeepMind’s Revolutionary Leap in Material Science. https://weeklyreport.ai/blog/the-crystal-ball-ofai-deepmind-s-revolutionary-leap-in-material-science/
    Konno T et al. Phys. Rev. B,2021,103:014509
    Jung S G,Jung G,Cole J M. J. Chem. Inf. Model.,2024,64: 7349
    Horide T,Iyo A,Ichino Y. The transactions of the Institute of Electrical Engineers of Japan. A,2024,144:344
    Han X Q et al. 2024,arXiv:2409.08065
    Leggett A J. Rev. Mod. Phys.,1975,47:331
    Tulyagankhodjaev J A et al. Science,2023,382:438
    Sun Q,Jiang Z,Yu Y et al. Phys. Rev. B,2011,84:214501
    Sun Q,Xie X C. Phys. Rev. B,2013,87:245427
    Yuan W et al. Science Advances,2018,4:eaat1098
    Wampler J et al. PNAS,2020,117(14):7645
    Haensel P,Potekhin A Y,Yakovlev D G. Neutron Stars. Springer,2007
    彭秋和. 北京大学学报. 自然科学版,2003,(S1) :75
    Gerber S et al. Science,2015,350:949
    Mankowsky R et al. Nature,2014,516:71
    罗会仟. 现代物理知识. 2024,36(5):38
  • 加载中
计量
  • 文章访问数:  181
  • HTML全文浏览数:  181
  • PDF下载数:  33
  • 施引文献:  0
出版历程
  • 收稿日期:  2025-02-19
  • 刊出日期:  2025-04-23

实现室温超导的可行性路径探讨

    通讯作者: 罗会仟,email:hqluo@iphy.ac.cn
  • 中国科学院物理研究所 北京凝聚态物理国家研究中心 北京 100190

摘要: 室温超导作为物理学皇冠上的明珠之一,吸引了众多科学家的持续关注和不懈努力。近年来,关于室温超导的报道既屡见不鲜亦充满争议,反映了人们对实现室温超导的热切期待。文章介绍了超导现象的基本特征、判定方法和典型材料,总结了“室温超导”相关的多起乌龙事件背后的经验教训。作者依据个人经验,提出了实现室温超导的10条可行性科学路径;最后表达了对室温超导的一些理性思考。作者认为,随着各类超导材料的不断涌现,室温超导的时代必将加速到来。但面对室温超导要保持谨慎乐观的态度,认真审视每一个科学判据,发掘可能的实用化价值,实现科学意义上的重大突破。

English Abstract

参考文献 (94)

目录

/

返回文章
返回