探针下的量子奇境:拓扑超导体的原子级精准构筑与探测

上一篇

下一篇

王东飞. 2025: 探针下的量子奇境:拓扑超导体的原子级精准构筑与探测, 物理, 54(5): 332-343. doi: 10.7693/wl20250504
引用本文: 王东飞. 2025: 探针下的量子奇境:拓扑超导体的原子级精准构筑与探测, 物理, 54(5): 332-343. doi: 10.7693/wl20250504
WANG Dong-Fei. 2025: Quantum wonderland beneath a microscopic tip:constructing and probing topological superconductors with atomic precision, Physics, 54(5): 332-343. doi: 10.7693/wl20250504
Citation: WANG Dong-Fei. 2025: Quantum wonderland beneath a microscopic tip:constructing and probing topological superconductors with atomic precision, Physics, 54(5): 332-343. doi: 10.7693/wl20250504

探针下的量子奇境:拓扑超导体的原子级精准构筑与探测

    通讯作者: 王东飞,email:dfwang@bit.edu.cn
  • 基金项目:

    国家自然科学基金(批准号:12474474)资助项目

Quantum wonderland beneath a microscopic tip:constructing and probing topological superconductors with atomic precision

    Corresponding author: WANG Dong-Fei, dfwang@bit.edu.cn
  • 摘要: 拓扑超导体作为近年来新兴的一类超导体,是研究物质拓扑性、超导对称性等基础物性的理想平台。拓扑超导体还可以支持一种反粒子等于其自身的马约拉纳任意子的存在,这种神奇粒子有望被应用于容错量子计算。扫描隧道显微镜及扫描隧道显微谱仪由于其极高的空间分辨率和能量分辨率,是在原子尺度研究物质拓扑超导电性的先进实验手段。文章简要介绍了拓扑超导体及马约拉纳任意子的相关物理性质及理论模型,并回顾了近年来利用扫描隧道显微技术对拓扑超导体及马约拉纳任意子的有关研究进展。整体上该领域的微观尺度研究发展迅速,一系列新型拓扑超导物质体系被相继发现,并找到了马约拉纳任意子存在的一些有力证据。同时,仍需要多维度的探测及表征手段来加深对拓扑超导体中所观测到的各种新奇物态的理解。
  • 加载中
  • Nielsen M A. Chuang I L. Quantum Computation and Quantum Information:10th Anniversary Edition,Cambridge University Press, 2010.p709
    朱国毅,王瑞蕊,张广铭. 物理,2017,46:154
    Sato M,Ando Y. Rep. Prog. Phys.,2017,80:076501
    Kitaev A Y. Annals of Physics,2003,303:2
    Qi X L,Zhang S C. Rev. Mod. Phys.,2011,83:1057
    Ivanov D A. Phys. Rev. Lett.,2001,86:268
    Kitaev A Y. Phys.-Usp.,2001,44:131
    Kane C L. Contemporary Concepts of Condensed Matter Science. Elsevier,2013.pp.3—34
    Schnyder A P,Ryu S,Furusaki A et al. Phys. Rev. B,2008,78: 195125
    Kitaev A. AIP Conference Proceedings,2009,1134:22
    Read N,Green D. Phys. Rev. B,2000,61:10267
    Alicea J. Rep. Prog. Phys.,2012,75:076501
    Qi X L,Hughes T L,Raghu S et al. Phys. Rev. Lett.,2009,102: 187001
    Fu L,Kane C L. Phys. Rev. Lett.,2008,100:096407
    Sau J D,Lutchyn R M,Tewari S et al. Phys. Rev. Lett.,2010, 104:040502
    Lutchyn R M,Sau J D,Das Sarma S. Phys. Rev. Lett.,2010, 105:077001
    Oreg Y,Refael G,von Oppen F. Phys. Rev. Lett.,2010,105:177002
    Nadj-Perge S,Drozdov I K,Bernevig B A et al. Phys. Rev. B, 2013,88:020407
    Braunecker B,Simon P. Phys. Rev. Lett.,2013,111:147202
    Pientka F,Glazman L I,von Oppen F. Phys. Rev. B,2013,88: 155420
    Klinovaja J,Stano P,Yazdani A et al. Phys. Rev. Lett.,2013, 111:186805
    Röntynen J,Ojanen T. Phys. Rev. Lett.,2015,114:236803
    Li J,Neupert T,Wang Z et al. Nat. Commun.,2016,7:12297
    Rachel S,Mascot E,Cocklin S et al. Phys. Rev. B,2017,96: 205131
    Nakosai S,Tanaka Y,Nagaosa N. Phys. Rev. B,2013,88: 180503
    Chen W,Schnyder A P. Phys. Rev. B,2015,92:214502
    Yang G,Stano P,Klinovaja J et al. Phys. Rev. B,2016,93: 224505
    Hals K M D,Schecter M,Rudner M S. Phys. Rev. Lett.,2016, 117:017001
    Pershoguba S S,Nakosai S,Balatsky A V. Phys. Rev. B,2016, 94:064513
    Pientka F,Keselman A,Berg E et al. Phys. Rev. X,2017,7: 021032
    Hosur P,Ghaemi P,Mong R S K et al. Phys. Rev. Lett.,2011, 107:097001
    Albrecht Sven Marian 2016(Copenhagen:University of Copenhagen,Faculty of Science,Niels Bohr Institute,Center for Quantum Devices)
    Nadj-Perge S,Drozdov I K,Li J et al. Science,2014,346:602
    Feldman B E,Randeria M T,Li J et al. Nat. Phys.,2017,13:286
    Pawlak R,Kisiel M,Klinovaja J et al. npj Quantum Inf.,2016,2:16035
    Ruby M,Pientka F,Peng Y et al. Phys. Rev. Lett.,2015,115: 197204
    Ruby M,Heinrich B W,Peng Y et al. Nano Lett.,2017,17:4473
    Jäck B,Xie Y,Yazdani A. Nat. Rev. Phys.,2021,3:541
    Kim H,Palacio-Morales A,Posske T et al. Sci. Adv.,2018,4: eaar5251
    Schneider L,Brinker S,Steinbrecher M et al. Nat. Commun., 2020,11:4707
    于渌.物理学报,1965,21:75
    Schneider L,Beck P,Posske T et al. Nat. Phys.,2021,17:943
    Schneider L,Beck P,Neuhaus-Steinmetz J et al. Nat. Nanotechnol.,2022,17:384
    Küster F,Brinker S,Hess R et al. Proceedings of the National Academy of Sciences,2022,119:e2210589119
    Mier C,Hwang J,Kim J et al. Phys. Rev. B,2021,104:045406
    Trivini S,Ortuzar J,Zaldivar J et al. 2024,arXiv:2408.11704
    Rodrigo J G,Crespo V,Suderow H et al. New J. Phys.,2013, 15:055020
    Reiner J,Nayak A K,Tulchinsky A et al. Phys. Rev. X,2020,10: 011002
    Ménard G C,Guissart S,Brun C et al. Nat. Commun.,2017,8: 2040
    Ménard G C,Mesaros A,Brun C et al. Nat. Commun.,2019,10: 2587
    Kezilebieke S,Huda M N,Vaňo V et al. Nature,2020,588:424
    Li Y,Yin R,Li M et al. Nat. Commun.,2024,15:10121
    Palacio-Morales A,Mascot E,Cocklin S et al. Science Advances,2019,5:eaav6600
    Nayak A K,Steinbok A,Roet Y et al. Nat. Phys.,2021,17:1413
    Li P,Zhang J,Zhu D et al. Nano Lett.,2024,24:9468
    Lüpke F,Waters D,de la Barrera S C et al. Nat. Phys.,2020, 16:526
    Xu J P,Wang M X,Liu Z L et al. Phys. Rev. Lett.,2015,114: 017001
    Sun H H,Jia J F. npj Quant. Mater.,2017,2:1
    Kamlapure A,Manna S,Cornils L et al. Phys. Rev. B,2017,95: 104509
    Chen M,Chen X,Yang H et al. Science Advances,2018,4: eaat1084
    Ding S,Chen C,Cao Z et al. Science Advances,2022,8: eabq4578
    Chen X,Chen M,Duan W et al. Nano Lett.,2020,20:2965
    Wan S,Gu Q,Li H et al. Phys. Rev. B,2020,101:220503
    Hao N,Hu J. National Science Review,2019,6:213
    Chen M,Chen X,Yang H et al. Nat. Commun.,2018,9:970
    Wang D,Kong L,Fan P et al. Science,2018,362:333
    Zhu S,Kong L,Cao L et al. Science,2020,367:189
    Kong L,Zhu S,Papaj M et al. Nat. Phys.,2019,15:1181
    Machida T,Sun Y,Pyon S et al. Nat. Mater.,2019,18:811
    Wang Z,Rodriguez J O,Jiao L et al. Science,2020,367:104
    Chen X,Chen M,Duan W et al. 2019,arXiv:1909.01686
    Li M,Li G,Cao L et al. Nature,2022,606:890
    Wang D,Zhong R,Gu G et al. Phys. Rev. Res.,2021,3:L032055
    Kong L,Cao L,Zhu S et al. Nat. Commun.,2021,12:4146
    Cao L,Liu W,Li G et al. Nat. Commun.,2021,12:6312
    Liu W,Hu Q,Wang X et al. Quantum Front.,2022,1:20
    Liu Q,Chen C,Zhang T et al. Phys. Rev. X,2018,8:041056
    Zhang T,Bao W,Chen C et al. Phys. Rev. Lett.,2021,126: 127001
    Chen Q L. Chin. Phys. Lett.,2019,36:57403
    Lv Y F,Wang W L,Zhang Y M et al. Science Bulletin,2017, 62:852
    Yuan Y,Pan J,Wang X et al. Nat. Phys.,2019,15:1046
    Fan X M,Sun X Q,Zhu P H et al. National Science Review, 2024,12:nwae312
    Jiang K,Dai X,Wang Z. Phys. Rev. X,2019,9:011033
    Yin J X,Wu Z,Wang J H et al. Nat. Phys.,2015,11:543
    Fan P,Yang F,Qian G et al. Nat. Commun.,2021,12:1348
    Liu C,Chen C,Liu X et al. Science Advances,2020,6:eaax7547
    Chen C,Jiang K,Zhang Y et al. Nat. Phys.,2020,16:536
    Zhang Y,Jiang K,Zhang F et al. Phys. Rev. X,2021,11:011041
    Zhang S S,Yin J X,Dai G et al. Phys. Rev. B,2020,101:100507
    Teo J C Y,Kane C L. Phys. Rev. B,2010,82:115120
    Asahi D. Phys. Rev. B,2012,86:100504(R)
    Amundsen M,Juričić V. Commun. Phys.,2023,6:232
    Hughes T L. Phys. Rev. B,2014,90:235123
    Hu L H,Zhang R X. 2022,arXiv:2207.10113
    Mesaros A,Gu G D,Massee F. Nat. Commun.,2024,15:3774
    Yan Z,Song F,Wang Z. Phys. Rev. Lett.,2018,121:096803
    Wang Q,Liu C C,Lu Y M et al. Phys. Rev. Lett.,2018,121: 186801
    Yan Z. Phys. Rev. B,2019,100:205406
    Schindler F,Wang Z,Vergniory M G et al. Nat. Phys.,2018, 14:918
    Jäck B,Xie Y,Li J et al. Science,2019,364:1255
    Yang H,Li Y Y,Liu T T et al. Phys. Rev. Lett.,2020,125: 136802
    Liu T,Wan C Y,Yang H et al. Nature,2024,633:71
    Fang C,Gilbert M J,Bernevig B A. Phys. Rev. Lett.,2014,112: 106401
    Bazarnik M,Lo Conte R,Mascot E et al. Nat. Commun.,2023, 14:614
    Kawakami T,Hu X. Phys. Rev. Lett.,2015,115:177001
    Sticlet D,Bena C,Simon P. Phys. Rev. Lett.,2012,108:096802
    Sun H H,Zhang K W,Hu L H et al. Phys. Rev. Lett.,2016, 116:257003
    Jeon S,Xie Y,Li J et al. Science,2017,358:772
    Wang D,Wiebe J,Zhong R et al. Phys. Rev. Lett.,2021,126: 076802
    Bolech C J,Demler E. Phys. Rev. Lett.,2007,98:237002
    Golub A,Horovitz B. Phys. Rev. B,2011,83:153415
    Ge J F,Bastiaans K M,Chatzopoulos D et al. Nat. Commun., 2023,14:3341
  • 加载中
计量
  • 文章访问数:  32
  • HTML全文浏览数:  32
  • PDF下载数:  11
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-12-20

探针下的量子奇境:拓扑超导体的原子级精准构筑与探测

    通讯作者: 王东飞,email:dfwang@bit.edu.cn
  • 北京理工大学物理学院 先进光电量子结构设计与测量教育部重点实验室 先进光场显示芯片与系统全国重点实验室 北京 100081
基金项目: 

摘要: 拓扑超导体作为近年来新兴的一类超导体,是研究物质拓扑性、超导对称性等基础物性的理想平台。拓扑超导体还可以支持一种反粒子等于其自身的马约拉纳任意子的存在,这种神奇粒子有望被应用于容错量子计算。扫描隧道显微镜及扫描隧道显微谱仪由于其极高的空间分辨率和能量分辨率,是在原子尺度研究物质拓扑超导电性的先进实验手段。文章简要介绍了拓扑超导体及马约拉纳任意子的相关物理性质及理论模型,并回顾了近年来利用扫描隧道显微技术对拓扑超导体及马约拉纳任意子的有关研究进展。整体上该领域的微观尺度研究发展迅速,一系列新型拓扑超导物质体系被相继发现,并找到了马约拉纳任意子存在的一些有力证据。同时,仍需要多维度的探测及表征手段来加深对拓扑超导体中所观测到的各种新奇物态的理解。

English Abstract

参考文献 (112)

目录

/

返回文章
返回