蓬勃发展的钙钛矿太阳能电池

上一篇

下一篇

黄天宇, 吴疆, 赵丽宸, 朱瑞. 2025: 蓬勃发展的钙钛矿太阳能电池, 物理, 54(8): 527-538. doi: 10.7693/wl20250801
引用本文: 黄天宇, 吴疆, 赵丽宸, 朱瑞. 2025: 蓬勃发展的钙钛矿太阳能电池, 物理, 54(8): 527-538. doi: 10.7693/wl20250801
HUANG Tian-Yu, WU Jiang, ZHAO Li-Chen, ZHU Rui. 2025: Perovskite solar cells are thriving, Physics, 54(8): 527-538. doi: 10.7693/wl20250801
Citation: HUANG Tian-Yu, WU Jiang, ZHAO Li-Chen, ZHU Rui. 2025: Perovskite solar cells are thriving, Physics, 54(8): 527-538. doi: 10.7693/wl20250801

蓬勃发展的钙钛矿太阳能电池

    通讯作者: 吴疆,email:wujiang@pku.edu.cn;  赵丽宸,email:lczhao@pku.edu.cn;  朱瑞,email:iamzhurui@pku.edu.cn

Perovskite solar cells are thriving

    Corresponding authors: WU Jiang ;  ZHAO Li-Chen ;  ZHU Rui
  • 摘要:

    新能源技术的发展浪潮浩浩荡荡,每一种新兴技术都身处潮流之中。钙钛矿太阳能电池技术是一位实力与运气兼备的“未来之星”,过去十余年间,已认证光电转换效率一路飙升至 27.0%,走完了它的前辈——晶硅太阳能电池用了大半个世纪才走完的路。钙钛矿太阳能电池技术之所以发展得如此迅猛,主要归功于其具有组分和带隙灵活可调、原料来源广泛、工艺简单、成本低廉等方面的优势。除此之外,它还具备轻质柔性、可与硅基太阳能电池集成的优势,使其应用空间得到了进一步拓展,显示出成为新一代主流光伏技术的巨大潜力。文章回顾钙钛矿太阳能电池的基本物理原理与发展历程,详细阐述电池器件结构的划分和组成,总结针对电池结构及相关材料的优化手段,并分类介绍不同类型的钙钛矿太阳能电池及发展现状,最后对钙钛矿太阳能电池的研究进行展望。

  • 加载中
  • Einstein A. Annalen der Physik,1905,322:132
    Park N G,Grätzel M,Miyasaka T. Organic-Inorganic Halide Perovskite Photovoltaics. Springer,2016
    Reference Air Mass 1.5 Spectra. https://www.nrel.gov/grid/solarresource/spectra-am1.5
    Luo D,Su R,Zhang W et al. Nature Reviews Materials, 2020,5:44
    Kieslich G,Sun S,Cheetham A K. Chemical Science,2014,5: 4712
    Kim J Y,Lee J W,Jung H S et al. Chem. Rev.,2020,120:7867
    Weber D. Zeitschrift für Naturforschung B,1978,33:1443
    Filip M R,Eperon G E,Snaith H J et al. Nat. Commun.,2014,5: 5757
    Prasanna R et al. J. Am. Chem. Soc.,2017,139:11117
    Hu Z et al. Solar RRL,2019,3:1900304
    Kojima A,Teshima K,Shirai Y et al. J. Am. Chem. Soc.,2009, 131:6050
    Im J H,Lee C R,Lee J W et al. Nanoscale,2011,3:4088
    Lee M M,Teuscher J,Miyasaka T et al. Science,2012,338:643
    Kim H S et al. Scientific Reports,2012,2:591
    M. NREL PV Research Cell Record Efficiency Chart. https:// www.nrel.gov/pv/cell-efficiency.html (accessed:2025)
    Xing G et al. Science,2013,342:344
    Stranks S D et al. Science,2013,342:341
    Yu S et al. Science,2023,382:1399
    Zhu R. Nature Energy,2020,5:123
    Zhang W et al. Advanced Materials,2024,36:2311025
    Liu L et al. Scientific Reports,2013,3:2413
    Liu J et al. Science,2024,383:1198
    Chen W et al. Energy & Environmental Science,2015,8:629
    Li Q et al. Nature Energy,2024,9:1506
    Yang X et al. Advanced Materials,2020,32:2002585
    Arora N et al. Science,2017,358:768
    Park J et al. Nature,2023,616:724
    Heo J H,Han H J,Kim D et al. Energy & Environmental Science,2015,8:1602
    Mazumdar S,Zhao Y,Zhang X. Science China Physics, Mechanics & Astronomy,2022,66:217304
    Jeng J Y et al. Advanced Materials,2013,25:3727
    Chen K et al. Advanced Materials,2016,28:10718
    Zhao L et al. Advanced Functional Materials,2016,26:3508
    Luo D et al. Advanced Materials,2017,29:1604758
    Luo D et al. Science,2018,360:1442
    Magomedov A et al. Advanced Energy Materials,2018,8: 1801892
    Zhang S et al. Science,2023,380:404
    Al-Ashouri A et al. Science,2020,370:1300
    Xiao M et al. Angewandte Chemie International Edition,2014, 53:9898
    Xiao Z et al. Energy & Environmental Science,2014,7:2619
    Chen B,Rudd P N,Yang S et al. Chem. Soc. Rev.,2019,48:3842
    Jiang Q et al. Nature Photonics,2019,13:460
    Zhou B et al. Research,2024,7:0309
    Yang X et al. Advanced Materials,2021,33:2006435
    Liu S et al. Nature,2024,632:536
    Shockley W,Queisser H J. Journal of Applied Physics,1961, 32:510
    Polman A,Knight M,Garnett E C et al. Science,2016,352: aad4424
    Meier J,Flückiger R,Keppner H et al. Applied Physics Letters, 1994,65:860
    Duan L et al. Nature Reviews Materials,2023,8:261
    Wu X,Li B,Zhu Z et al. Chem. Soc. Rev.,2021,50:13090
    Ramadan A J,Oliver R D J,Johnston M B et al. Nature Reviews Materials,2023,8:822
    崔兴华等. 物理学报,2020,69:7401
    张美荣等. 物理学报,2023,72:8801
    Aydin E et al. Science,2024,383:eadh3849
    Bailie C D et al. Energy & Environmental Science,2015,8:956
    Mailoa J P et al. Applied Physics Letters,2015,106:121105
    李梓进,王维燕,李红江等. 材料导报,2020,34:21061
    Wang Y et al. Journal of Semiconductors,2020,41(5):051201
    Wen J,Tan H. Science China Materials,2022,65:3353
    Chen C W et al. Journal of Materials Chemistry A,2015,3:9152
    Zhao D et al. Nature Energy,2018,3:1093
    王俪璇等. 物理学报,2021,70:8401
    Chirilă A et al. Nat. Mater.,2011,10:857
    Todorov T et al. Advanced Energy Materials,2015,5:1500799
    占肖卫. 李腾飞. 化学学报,2021,79:257
    Brinkmann K O et al. Nature Reviews Materials,2024,9:202
    Jiang X et al. Nature,2024,635:860
    Wang Z et al. Nature,2023,618:74
    Liu S et al. Nature,2024,628:306
    张美合,李志浩,李红刚等. 力学进展,2022,52:311
    Jung H S,Han G S,Park N G et al. Joule,2019,3:1850
    Hwang K et al. Advanced Materials,2015,27:1241
    Aftab S et al. Nano Energy,2024,120:109112
    Kumar M H et al. Chem. Commun.,2013,49:11089
    Li Y et al. Organic Electronics,2019,65:19
    Xie L et al. Energy & Environmental Science,2023,16:5423
    Wu J et al. Science China Materials,2022,65:2319
    Lee M,Jo Y,Kim D S et al. Journal of Materials Chemistry A, 2015,3:4129
    Castro-Hermosa S,Dagar J,Marsella A et al. IEEE Electron Device Letters,2017,38:1278
    Qiu L,Deng J,Lu X et al. Angewandte Chemie International Edition,2014,53:10425
    Dong B et al. Advanced Materials Technologies,2019,4: 1900131
    Batmunkh M,Zhong Y L,Zhao H. Advanced Materials,2020, 32:2000631
    Nukunudompanich M,Sriprapai D,Sontikaew S. Materials Today:Proceedings,2022,66:3163
    Chen P et al. Advanced Materials,2023,35:2208178
    Tu Y et al. Science China Physics,Mechanics & Astronomy, 2019,62:974221
    纤纳光电. https://www.microquanta.com/newsinfo
    Rong Y et al. Science,2018,361:eaat8235
    Koh T M et al. Advanced Materials,2022,34:2104661
    Yoon J et al. Chem. Soc. Rev.,2021,50:12915
    Luo M,Tarasov A,Zhang H et al. Nature Reviews Materials, 2024,9:295
    Wang K L,Zhou Y H,Lou Y H et al. Chemical Science,2021, 12:11936
    Gao L,Chen L,Huang S et al. ACS Applied Energy Materials, 2019,2:3851
    Zhang X et al. Advanced Science,2021,8:2100552
    Tu Y et al. Advanced Materials,2021,33:2006545
    Cardinaletti I et al. Solar Energy Materials and Solar Cells, 2018,182:121
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览数:  86
  • PDF下载数:  23
  • 施引文献:  0
出版历程
  • 收稿日期:  2025-04-16
  • 刊出日期:  2025-08-23

蓬勃发展的钙钛矿太阳能电池

    通讯作者: 吴疆,email:wujiang@pku.edu.cn; 
    通讯作者: 赵丽宸,email:lczhao@pku.edu.cn; 
    通讯作者: 朱瑞,email:iamzhurui@pku.edu.cn
  • 1 北京大学 人工微结构和介观物理全国重点实验室 北京 100871;
  • 2 北京大学 长三角光电科学研究院 南通 226010;
  • 3 北京大学 教育部纳光电子前沿科学中心 北京 100871;
  • 4 山西大学 极端光学协同创新中心 太原 030006

摘要: 

新能源技术的发展浪潮浩浩荡荡,每一种新兴技术都身处潮流之中。钙钛矿太阳能电池技术是一位实力与运气兼备的“未来之星”,过去十余年间,已认证光电转换效率一路飙升至 27.0%,走完了它的前辈——晶硅太阳能电池用了大半个世纪才走完的路。钙钛矿太阳能电池技术之所以发展得如此迅猛,主要归功于其具有组分和带隙灵活可调、原料来源广泛、工艺简单、成本低廉等方面的优势。除此之外,它还具备轻质柔性、可与硅基太阳能电池集成的优势,使其应用空间得到了进一步拓展,显示出成为新一代主流光伏技术的巨大潜力。文章回顾钙钛矿太阳能电池的基本物理原理与发展历程,详细阐述电池器件结构的划分和组成,总结针对电池结构及相关材料的优化手段,并分类介绍不同类型的钙钛矿太阳能电池及发展现状,最后对钙钛矿太阳能电池的研究进行展望。

English Abstract

参考文献 (94)

目录

/

返回文章
返回