自旋1/2非对易朗道问题的Wigner函数(英文)
Winger Function for Spin Half Non-commutativeLandau Problem
-
摘要: Wigner函数在对量子体系状态的描述方面具有重要的意义。讨论了自旋1/2非对易朗道问题的Wigner函数。首先回顾了对易空间中Wigner函数所服从的星本征方程,然后给出了非对易相空间中自旋1/2朗道问题的Hamiltonian,最后利用星本征方程(Moyal方程)计算了非对易相空间中自旋1/2朗道问题具有矩阵表示形式的Wigner函数及其能级。Abstract: With great significance in describing the state of quantum system,the Wigner function of the spin half non-commutative Landau problem is studied in this paper.On the basis of the review of the Wigner function in the commutative space,which is subject to the *-eigenvalue equation,Hamiltonian of the spin half Landau problem in the non-commutative phase space is given.Then,energy levels and Wigner functions in the form of a matrix of the spin half Landau problem in the non-commutative phase space are obtained by means of the *-eigenvalue equation(or Moyal equation).
-
-
计量
- 文章访问数: 324
- HTML全文浏览数: 14
- PDF下载数: 0
- 施引文献: 0