由基样条构造有限基集计算的超精细结构常数
Hyperfine Structure Constants Calculated by Using Finite Basis Sets Constructed with B-splines
-
摘要: 多体微扰论有效算符方法应用于超精细结构的计算. 由HF波函数计算零阶超精细常数. 使用基样条构造了薛定谔方程的有限基集. 使用这些有限基集计算了原子实极化和关联, 以及 7Li, 23Na, 39K和43Ca离子的s1/2, p1/2和p3/2 态的超精细结构常数和43Ca离子的d3/2和d5/2态的超精细常数.Abstract: The effective-operator form of many-body theory is applied to the calculation of hyperfine structure. The zeroth order hyperfine constants are evaluated with Hartree-Fock wavefunction. Τhe finite basis sets of Schrdinger's equation are constructed by using B-splines. With the finite basis sets, we have calculated the core polarization, and the correlation diagrams. The hyperfine constants of the s1/2, p1/2and p3/2 states of 7Li, 23Na, 39K, 43Ca+ as well as the d3/2 and d5/2 of 43Ca+ are evaluated.
-
-
计量
- 文章访问数: 707
- HTML全文浏览数: 57
- PDF下载数: 2
- 施引文献: 0