ADS瞬态分析中的概率论-确定论耦合方法
Coupled stochastic-deterministic method for accelerator-driven subcritical system transient analysis
-
摘要: 针对加速器驱动次临界系统(ADS)瞬态问题,采用预估校正改进准静态方法(PCQS)处理时空中子动力学方程中的时间自变量,采用蒙特卡罗方法处理相应的空间-角度-能量自变量,重点解决了低次临界度下模拟计算不稳定的问题,验证了TWGIL-Seed-Blanket动力学基准问题和小型模拟ADS问题,得到瞬态过程的功率变化结果,与基于其他方法的程序比较,经初步验证取得了较好结果,证明了该耦合方法可行.
-
关键词:
- 加速器驱动次临界系统 /
- 瞬态分析 /
- 蒙特卡罗方法 /
- 预估校正的改进准静态方法 /
- 耦合方法
Abstract: In accelerator-driven subcritical system (ADS),the transient characteristic is quite different from that of traditional critical system due to its strong external neutron source and its fuel composition for transmutation.This paper presents a coupled stochastic-deterministic method for analysing the transient characteristic of ADS.After comparing various reactor transient calculation methods,predictor-corrector improved quasi-static method was chosen to handle the time variable of neutron spacetime kinetics equation.Considering the specific neutron spectrum,Monte Carlo method was used to handle the corresponding spatial,angle and energy variables.The main problem encountered is the Monte Carlo iteration instability for slightly subcritical system.Numerical results demonstrates the effectiveness of the new method. -
-
计量
- 文章访问数: 247
- HTML全文浏览数: 185
- PDF下载数: 5
- 施引文献: 0