摘要:
作为构成量子多体系统的基本单元,一维少体系统的研究不仅可以在理论上为多体系统的量子关联及动力学等性质提供更为基本的理解,也可以为实验上制备多体系统提供更加方便和功能更加全面的方法.本文回顾了冷原子物理中一维少体系统最新的实验和理论进展.首先介绍了少体实验中实现的谐振子势阱中确定原子数的精确制备,亚稳态势阱和双阱系统中原子的隧穿,以及强相互作用下等效自旋链的实验结果.然后深度解析了理论研究方面,特别是基于精确可解模型的一些重要结果,包括亚稳态势阱中相互作用原子的隧穿概率,以及相应实验上常见势阱的能谱分析、密度分布、隧穿动力学以及强相互作用极限下的有效自旋链模型等.
Abstract:
We review some recent theoretical and experimental developments of one-dimensional few-body problems in ultracold atomic system. The experiments have so far realized the deterministic loading of few atoms in the ground state of a potential well, the observation of tunneling dynamics out of the metastable trap controlled by a magnetic gradient for a repulsively or attractively interacting system, the preparation of two fermionic atoms in an isolated double-well potential with a full control over the quantum state of the system, the formation of a Fermi sea by studying quasi-one-dimensional systems of ultracold atoms consisting of a single impurity interacting with an increasing number of identical fermions, and the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up to four fermionic atoms in a one-dimensional trap. These achievements make the ultracold atoms an ideal platform to study many-body physics in a bottom-up approach, i.e., one starts from the fundamental building block of the system and observes the emergence of many-body effects by adding atoms one by one into the system. Corresponding theoretical models have been developed to explain the experimental data, to tackle the crossover boundary between few and many particles, and even explore the solvability and integrability of the models, especially the energy spectrum of interacting few atoms such as two atoms in a harmonic trap, two heteronuclear atoms of unequal mass in a ring trap, and two atoms in a δ-barrier split double well potential. After a brief review of Bethe-Ansatz method, a theory for the tunneling of one atom out of a trap containing two interacting cold atoms is developed based on the calculation of the quasiparticle wave function, and the tunneling dynamics of two atoms starting from the NOON state is explored from the exactly solved model of -barrier split double well based on a Bethe ansatz type hypothesis of the wave functions. It was shown that the spectroscopy and spin dynamics for strongly interacting few atoms of spin-1/2 and spin-1 can be described by effective spin chain Hamiltonians, which serves as a useful and efficient tool to study the quantum magnetism with clod atoms.