摘要:
根据非线性局部Lyapunov指数方法,分别以常数强迫Lorenz系统和准周期强迫Lorenz系统为例,研究了在外强迫存在的条件下混沌系统可预报性的改变.结果表明:外强迫会影响混沌系统的可预报性,两种不同类型的强迫Lorenz系统的可预报期限都随着外强迫的增强而增加,但是大小相等方向相反的外强迫对系统可预报性的影响不同,其中正值强迫比负值强迫作用下的可预报期限更长,并且这种差异随着强度的增加而增大;不同形式的外强迫对可预报性的影响也不同,常数强迫的影响主要体现在误差增长的线性阶段,准周期强迫的影响除了线性阶段还必须考虑到非线性阶段;当强度相等的常数强迫和准周期强迫驱动Lorenz系统时,常数强迫作用下的系统可预报性更高.本文基于混沌理论模型的研究,对于实际大气的可预报性研究具有一定的启示意义.
Abstract:
In recent years, the actual atmospheric predictability has attracted widespread attention. Improving our under-standing of weather predictability is vital to developing numerical models and improving our forecast skill in weather and climate events. Given that the atmosphere is a complex and nonlinear system, taking the Lorenz system as an example is a better way to understand the actual atmosphere predictability. Up to now, some predictability problems of the Lorenz system have been investigated, such as the relative effects of the initial error and the model error. Previous advances in the research of predictability mainly focus on the relationship between the predictability limit and the initial error. As is well known, the external forcing can also result in the change of the predictability. Therefore, it is significant to investigate the predictability changing with the external forcing. The nonlinear local Lyapunov exponent (NLLE) is introduced to measure the average growth rate of the initial error of nonlinear dynamical model, which has been used for quantitatively determining the predictability limit of chaos system. Based on the NLLE approach, the influences of external forcing on the predictability are studied in the Lorenz system with constant forcing and Lorenz system with quasi-periodic forcing in this paper. The results indicate that for the Lorenz systems with constant and quasi-periodic forcings respectively, their predictability limits increase with forcing strength increasing. In the case of the same mag-nitude but different directions, the constant and quasi-periodic forcing both show different effects on the predictability limit in the Lorenz system, and these effects become significant with the increase of forcing strength. Generally speaking, the positive forcing leads to a higher predictability limit than the negative forcing. Therefore, when we consider the effects of positive and negative elements and phases in the atmosphere and ocean research, the predictability problems driven by different phases should be considered separately. In addition, the influences of constant and quasi-periodic forcings on the predictability are different in the Lorenz system. The effect of the constant forcing on the predictability is mainly reflected in the linear phase of error growth, while the nonlinear phase should also be considered additionally for the case of the quasi-periodic forcing. The predictability of the system under constant forcing is higher than that of the system under quasi-periodic forcing. These results based on simple chaotic model could provide an insight into the predictability studies of complex systems.