高超临界雷诺数区间内二维圆柱绕流的实测研究?
- 同济大学土木工程防灾国家重点实验室,上海 200092; 南京工业大学土木工程学院,南京 211816
- 同济大学土木工程防灾国家重点实验室,上海,200092
摘要: 实测强风工况下高度167 m的徐州彭城电厂冷却塔的表面风荷载,并归纳历史上其他研究人员给出的实测结果,以丰富高超临界雷诺数(Re)区间二维圆柱绕流的试验成果.在低湍流度均匀流场和高湍流度大气边界层流场中分别开展4种风速8类粗糙度条件下的冷却塔刚性模型测压风洞试验,通过对比低雷诺数(Re =2.1×105—4.19×105)条件下的风洞试验结果和高雷诺数(Re =5.4×107—1×108)条件下的现场实测结果研究各种静动态绕流特征随雷诺数的变化规律,重点考察雷诺数无关现象的产生条件.研究结果表明,对于物表相对粗糙度在0.01以上的圆柱绕流,雷诺数不相关现象存在于很宽的雷诺数范围(2×105
Field measurements on flow past a circular cylinder in transcritical Reynolds numb er regime
- 同济大学土木工程防灾国家重点实验室,上海 200092; 南京工业大学土木工程学院,南京 211816
- 同济大学土木工程防灾国家重点实验室,上海,200092
Abstract: Flow around a circular cylinder is a classic scenario which invariably draws the attention of the fluid mechanics circle, because its relevant studies are of both theoretical and practical significances. However, most experiments are conducted below transcritical Reynolds number (Re) regime (Re<3.5 × 106) due to the limitations of the wind tunnel modeling technique, which makes the obtained results inapplicable to some full-scale conditions. To this end, the field measurements for wind-induced pressures on a 167-meter high large cooling tower are conducted at Re=6.59 × 107 to enrich the experimental results of flow past a circular cylinder in transcritical Re regime. Besides, the wind effects at low Re (Re=2.1 × 105–4.19 × 105) are also obtained by tests on a 1:200 rigid cooling tower model in a wind tunnel with considering 4 types of wind speeds, 8 types of surface roughness, and 2 flow fields. Employing the data obtained from both field measurements and wind tunnel model tests, the variations of static/dynamic flow characteristics with Re increasing are studied. It is found that 1) with the increase of Re, the drag coe?cient for the smooth-walled tower in the uniform flow field decreases dramatically in the critical Re regime and increases slowly in the supercritical regime, which accord with Roshko’s and Achenbach’s results;2) for smooth-walled tower, both the base pressure coe?cient and pressure coe?cient increase significantly with the increase of Re in critical and supercritical regimes, which qualitatively accord with Shih’s results;and 3) the finding of the Strouhal number is supportive to Shih’s result (i.e., shedding from the rough cylinder persists throughout the Re range tested). More importantly, special attention is paid to the Re-independence phenomenon of fluid flow, which is a typical phenomenon occurring in transcritical Re regime. Results indicate that the Re-independence exists in an Re range from 2 × 105 to 1 × 108 for a circular cylinder with a relative roughness greater than 0.01, and the increased free-stream turbulence can also induce Re-independence which probably exists in a narrow low Re range. Considering the flow mechanism, a reasonable explanation can be found for the Re-independence phenomenon, i.e., the critical and supercritical regimes narrow and move to lower Re range with the increase of surface roughness or the increase of free-stream turbulence, so Re independence can occur at a very low Re.