摘要:
随着现代通信卫星技术的发展,对微波真空电子器件的寿命和可靠性提出了更高的要求,广泛应用于微波真空电子器件的蒙乃尔、不锈钢等金属材料的蒸发性能直接影响器件的可靠性和寿命。本文采用飞行时间质谱仪(TOFMS)研究金属材料蒸发性能。利用TOFMS测试了真空本底、蒙乃尔、不锈钢等各种金属材料蒸发物的成分和大小。测试结果表明TOFMS具有很高的灵敏度,是一种非常快捷的研究金属材料蒸发的实验手段。测试结果发现在远低于Mn, Cu及Cr熔点的温度下,蒙乃尔、不锈钢材料加热到800?C左右时就开始出现Mn, Cu元素的蒸发,在900?C时就有大量Mn, Cu和Cr元素的蒸发,这些蒸发物蒸发到绝缘陶瓷上会使电子枪的绝缘性能下降,因而蒙乃尔和不锈钢不适用于阴极电子枪零件,尤其不适用于长寿命高真空器件的阴极电子枪零件以及其他容易受到电子轰击的零件(如阳极、收集极等)。研究了在超高真空状态下加热时间对蒙乃尔和不锈钢材料表面结构的影响。发现蒙乃尔和不锈钢在900?C的温度下加热一段时间后,其表面结构有了很大的变化,出现了大量的孔洞和晶界,并且随着处理时间的延长,材料的晶粒间界逐渐变大,从而使材料的强度下降、出现渗气甚至漏气等现象,因此蒙乃尔和不锈钢材料制作的零件尤其是薄壁零件不宜长时间在超高真空状态下高温加热。结合相关的理论知识对此现象进行了详细的分析。
Abstract:
The development of modern satellite communication technologies is imposing higher demands on the lifetime and reliability of the microwave vacuum electronic devices, which directly depend on the evaporation properties of the extensively used Monel and stainless steel. Therefore, it is of vital importance to study the evaporation properties of these two types of metallic materials. For the first time, as far as we know, this paper proposes to study the evaporation properties of metallic materials using time-of-flight mass spectrometer (TOFMS). The components and the contents of the vacuum background, the evaporants from the Monel and from the stainless steel have been measured using the TOFMS, respectively. After the pressure of the measurement chamber is below 4.0 × 10?8 Pa, the TOFMS is used for the metallic materials working at different temperatures. They are respectively acquired when the Monel and stainless steel are at room temperature on operate between 750 to 900 ?C under a pressure of 1.0 × 10?6 Pa. The measurements are carried out rapidly and in high sensitivity. As disclosed by the measurements, Mn and Cu began to evaporate when the Monel and the stainless steel are heated to 800 ?C, which is still far below the melting points of the two alloys (1243 ?C and 1080 ?C). When the Monel and the stainless steel are further heated to 900 ?C, the evaporation of Mn, Cu, and Cr becomes quite considerable. Once the evaporated Mn, Cu, or Cr deposit on the ceramics for the insulation in an electron gun, its insulation will be deteriorated. Hence, the Monel and the stainless steel are not suitable to be use as the components in cathode electron guns, especially those used in the devices that are to work a long lifetime in high vacuum. Moreover, the Monel and the stainless steel are not suitable for use as the components that are often under the electron bombardment, e.g., anodes and collectors, either. The SEM images and XRD of the heat treated surface structures of the Monel and the stainless steel in ultrahigh vacuum (1.0 × 10?6 Pa) have also been studied. On heating at 900 ?C for 30 and 120 min the surface structure and composition change remarkably and a significant reduction in Mn and Cr is visible, and also a large number of holes and crystal boundaries emerge on the surfaces of the two metallic alloys. With increasing heating time, the boundaries will grow larger and larger. As a result, the strength of the two metallic materials becomes weaker and gas permeation and leakage even occur. Therefore, it can be concluded that the components made from Monel and stainless steel, especially those with thin walls, should not be heated to high temperatures in ultrahigh vacuum for a long time. The above phenomena are analyzed in detail theoretically and the proper and feasible application methods of the metallic materials are explored in device design and technological process control. These works are expected to contribute to the prolonging of the lifetimes of the satellites, and will lead to tremendous economic benefits.