摘要:
随着海洋环境武器装备隐身发展的需要,开展具有微波低通高阻特性的复合材料构件设计与研究显得重要而迫切. 文章首先设计了一种中空六边形周期性结构,以此为基础设计了一个由面层、中空六边形环周期层1、中间层、中空六边形环周期层2、面层组成的新型复合双层频率选择表面(FSS)结构件. 其上层FSS的结构参数为中空六边形环边长3.0 mm, 线宽度0.5 mm, 缝隙宽度0.4 mm; 下层FSS的结构参数为中空六边形环的边长3.2 mm, 线宽度0.5 mm, 缝隙宽度1.0 mm. 模拟结果表明: 该复合材料构件具备优良的低频透过性与高频屏蔽性快速转换的特性, 能够获得优异的低通高阻性能, 同时在45?范围内具备优良的角度不敏感性.最后制备和实验验证得到了0—2 GHz低频段具有95.6%高透过性、同时在7.05—18 GHz高频段具有10 dB以上屏蔽性能的复合材料构件,对具有隐身特性的新型滤波电磁功能构件的研制具有重要价值.
Abstract:
It is important and urgent to develop microwave low frequency band-pass and high frequency band-stop composite structures according to the needs of marine environment stealth weapons and equipment constructions. In this paper, a hollow hexagonal periodic structure is originally designed and the microwave band-pass and band-stop characteristics are investigated through the CST software simulation. As an optimization result, the numerical periodic structure parameters of hexagon ring are as follows: hexagon ring side length is 2.7 mm, line width 0.5 mm and gap width 0.15 mm, which shows a transmission of 83% at 0-2 GHz, and meanwhile a shielding efficiency of more than 10 dB at 8-18 GHz, thereby basically justifying our design target. On this basis, a new type of double-layers' composite frequency selective surface (FSS) structure which is composed of facial layer, hollow hexagon ring array 1, middle spacer layer, hollow hexagon ring array 2 and another facial layer stacked layer by layer, is creatively designed, which displays excellent microwave low frequency band-pass and high frequency band-stop performances compared with a single layer hollow hexagonal periodic structure, and by simulation and optimization, structural parameters of the upper FSS structure are as follows: hexagon ring side length is 3.0 mm, line width 0.5 mm, gap width 0.4 mm, and the lower FSS structure parameters are as follows: hexagon ring side length is 3.2 mm, line width 0.5 mm, gap width 1.0 mm;simulation results show itself that dual different layers' FSS design presents itself excellent low frequency band-pass and high frequency band-stop transformation characteristics, and the fast switch capacity is the basic foundation for both excellent low frequency band-pass and outstanding high frequency band-stop characteristics. The effects of wave incidence angle (TE) on electrical performance of dual-layers FSS are investigated and the results indicate that the designed dual-layers' FSS possesses a wide angle insensitivity in a range of 0-45?, which is especially beneficial to engineering applications. Finally the composite structures with dual-layers' FSSs are manufactured and verified, and high transmission up to 95.6% at 0-2 GHz frequency band and more than 10 dB shielding efficiency at 7.05-18 GHz are obtained, which strongly testifies our design idea and has important significance for developing the high performance band-pass and band-stop composite structure and new electromagnetic functional composite materials.