摘要:
近年来,由于钙钛矿材料优良的光学吸收和电荷传导特性,有机无机杂化固态太阳能电池取得了突破性的进展.自2009年首次报道了光电转换效率为3.8%的钙钛矿太阳能电池以来,该类电池的效率不断突破.基于介孔薄膜的电池已取得了超过16.7%的认证光电转换效率,基于平板异质结结构电池光电转换效率达到19.3%,已接近传统硅基太阳能电池的光电转换效率.本文将介绍有机无机杂化钙钛矿作为光电材料的光学物理结构特性,以及在固态太阳能电池中的应用.基于固态钙钛矿太阳能电池结构上的差异,分别介绍其在多孔结构、平板异质结结构、柔性结构以及无空穴传导材料结构电池工作特性和各自优势,以及影响电池特性的主要影响因素,特别是钙钛矿成膜控制等.并阐述对钙钛矿电池的理解和进一步提高固态钙钛矿电池光电转换效率需要关注的重点以及展望.
Abstract:
Recently solid-state organic-inorganic hybrid solar cells based on perovskite structured materials have evidenced a great breakthrough due to their perfect light absorption and charge transfer optoelectronic properties. The power conversion e?ciencies have exceeded 20.1% during the last 5 years, since the first report on perovskite solar cells with an e?ciency of 3.8% in 2009. Remarkably, perovskite solar cells with a planar-heterojunction structure have achieved an e?ciency of 19.3%, and the perovskite solar cells with conventional mesoporous structure have achieved a certified e?ciency above 16.7%. This review article first introduces the development of the third generation of solar cells from dye-sensitized solar cells to the perovskite solar cells, and then focuses on the optical and physical properties of the perovskite materials and their application in solid-state solar cells. We discuss the performance characteristics and advantages of the perovskite solar cells having mesoporous, planar heterojunction, flexibility, and hole-conductor-free structure respectively, and the charge collection layer which is applied in perovskite solar cells, such as semiconductor oxide (TiO2, Al2O3, ZnO and NiO) and PEDOT:PSS, etc. More over this review article introduces the charge transport materials, including P3HT, spiro-OMeTAD, PTAA, and PCBM, as well as different photoabsorption material, such as CH3NH3PbI3, CH3NH3PbBr3 and CH3NH3PbI3?xClx, etc. aiming to analyze their performance characteristic in the perovskite solar cells with different configurations; and the main factor related to the performance. Finally, this review elaborates the perspective and understanding of the perovskite solar cells and points out the critical point and expectation for improving the performance of perovskite solar cells further.