具有色散系数的(2+1)维非线性Schroedinger方程的有理解和空间孤子
Rational solutions and spatial solitons for the (2+1)-dimensional nonlinear Schroedinger equation with distributed coefficients
-
摘要: 非线性Schroedinger方程是物理学中具有广泛应用的非线性模型之一.本文采用相似变换,将具有色散系数的(2+1)维非线性Schrioedinger方程简化成熟知的Schroedinger方程,进而得到原方程的有理解和一些空间孤子.
-
关键词:
- 非线性Schroedinger方程 /
- 相似变换 /
- 有理解 /
- 孤子结构
Abstract: The nonlinear Schroedinger equation is one of the most important nonlinear models with widely applications in physics. Based on a similarity transformation, the (2+1)-dimensional nonlinear Schroedinger equation with distributed coefficients is transformed into a traceable nonlinear Schroedinger equation, and then two types of rational solutions and several spatial solitons are derived. -
-
计量
- 文章访问数: 233
- HTML全文浏览数: 46
- PDF下载数: 0
- 施引文献: 0