鞘场加速机理中质子束的特性与其初始尺寸的关系
The effect of the proton layer initial size on the proton beam characteristic in target normal sheath acceleration
-
摘要: 为了研究激光鞘场中质子层的尺寸对质子束特性的影响,本文应用中国工程物理研究院 激光聚变研究中心的二维Particle-In-Cell (2D-PIC)数值模拟程序Flips2D进行了相关数值模拟研究. 研究了质子束总能量随时间的变化,得出了加速持续过程与激光脉冲持续时间的关系; 研究了质子层的宽度对加速后质子束发散角和能谱的影响;研究了质子层的厚与加速后质子束 发散角和能谱的关系;得出了质子层的初始尺寸对加速后质子特性的影响规律.
-
关键词:
- 鞘场加速 /
- Particle—In—Cell /
- 质子层的尺寸 /
- 质子束的特性
Abstract: The proton beam accelerated by the interaction of laser with plasma has practical applications in radiography of dense plasma, fast ignition in inertial confinement fusion, and cancer treatment. The application domain is determined by the characteristic of the proton beams, which is affected by a lot parameters. In order to investigate the effect of the initial size of the proton layer, the two-dimensional Particle-In-Cell (2D-PIC) code Flips2D is used. The total energy of proton beam vs. time is studied, and the relation between the duration of acceleration and the period of laser pulse is obtained. The effects of the proton layer initial width and thickness on the divergence angle and the energy spectrum of the proton beam are investigated. The relation between the proton beam characteristics and proton layer initial size is obtained. -
-
计量
- 文章访问数: 512
- HTML全文浏览数: 148
- PDF下载数: 0
- 施引文献: 0